
Explorations of the viability of
ARM and Xeon Phi

for physics processing

Peter Elmer -

Princeton University

David Abdurachmanov -
Vilnius University

Giulio Eulisse,

Chris Jones,

Shahzad Muzaffar - FNAL

Kapil Arya,

Gene Cooperman -
Northeastern University

Tommaso Boccali -

INFN-Pisa

Andrea Dotti - SLAC

Francesco Giacomini,

Matteo Manzali - CNAF

Josh Bendavid - CERN

New architectures

• Over the past ten years
processors have hit power
limitations which place
significant constraints on
"Moore's Law" scaling.

• The first casualty was
scaling for single sequential
applications, giving birth to
multi-core processors.

From: "The Future of Computing Performance:
Game Over or Next Level?"

New Architectures

• Even multi-core,
implemented with
large "aggressive"
cores is just a stop-
gap. The power
limitations remain.
The focus is
shifting to
performance/watt,
not just
performance/price. From: "The Future of Computing Performance:

Game Over or Next Level?"

CMSDIST/PKGTOOLS

• In the following I will be talking about our ports of the CMS
software and the stack of "externals" to ARMv7 and to the
Xeon Phi, as well as some initial tests.

• Note that we don't just hack together some build locally on
a machine for this. We use same set of build tools we use
for x86-64. The build recipes are thus documented in the
form of rpm spec files and a successful build results also in
an rpm which can be uploaded to our apt repository.

• Build recipes: https://github.com/cms-sw/cmsdist

• Build tools: https://github.com/cms-sw/pkgtools

https://github.com/cms-sw/cmsdist
https://github.com/cms-sw/cmsdist

WLCG as Distributed Supercomputer

WLCG as Distributed Supercomputer - Power

• Not only would the the
WLCG be one of the top
supercomputers in terms
of performance if it were
considered as such, but it
also shares another
characteristic which is less
obvious.

• Using the mix of hardware
available at FNAL (and
known power use), we
estimate the aggregate
power cost to be of order
10MW

ODROID-U2 Development Board

• Initial tests done with a small 32bit/
ARMv7 development board

• Exynos4412 Prime CPU

• 1.7GHz Cortex-A9 quad core

• 2GB L-DDR memory (total)

• eMMC, microSD, 2xUSB2.0,
10/100Mbps Ethernet

• $89 (~$233 with cables, cooling fan,
64GB eMMC, power adaptor, ...)

• Fedora 18 ARMv7-A, hard
floats, gcc 4.8, ODROID
kernel

Arrived Feb, 2013

ODROID-XU+E Development Board

• Exynos5 octa (5410) CPU

• 1.6GHz Cortex-A15 quad core +
1.2GHz Cortex-A7 quad-core
(big.LITTLE heterogeneous mix)

• 2GB L-DDR memory (total)

• eMMC, microSD, 4xUSB2.0,
1xUSB3.0, 1xUSB3.0 OTG,
10/100Mbps Ethernet

• $199 (~$357 with 64GB eMMC, power
adaptor, "Smart Power" meter ...)

• Fedora 19 ARMv7-A, hard
floats, gcc 4.8, ODROID
kernel

Arrived 25 Sep, 2013

ARM integration build

• For new architectures our
aim has been not only to
do an initial port of the
software, but also to keep
the build alive over time
(and subsequent changes)

• For this reason we aim to
add new ports to the daily
integration builds (e.g.
ARMv7 port)

• 16 packages (of 1106)
don't build or link due to
missing Oracle for ARM

See also "The Rise of the Build
Infrastructure" (G.Eulisse)

on Thursday

Status of ARMv7 port

• Everything basically builds except a small set of CMSSW
packages which depend on Oracle

• At run time we still have some issue related to the ROOT
dictionaries which prevents reading and writing CMS event
data files. (This is after a couple of previous bugs were
found and fixed, plus some amount of adding missing
entries to dictionaries, as a follow-on to one of the fixes.)

• Some difficulties using (U2) Fedora18 builds on (XU+E)
Fedora19, so we've been doing separate builds for now.

ODROID Power

• A comparison of the power cost of this small development
board with a full server is a bit misleading, so we've tried to get
numbers that correspond to the Thermal Design Power (TDP),
for which there are published specs for x86-64.

• For both the U2 and the XU+E boards we used an external
"Smart Power" meter that also provides the measurements to
the board via USB.

• For the XU+E board, there are also dedicated sensors that
allow measurement of the power used by the A15 cluster, the
A7 cluster, the memory and the GPU (independently)

ODROID U2 power (from "Smart Power" meter)

ODROID U2 Voltage (V) Current (mA) Power (W)

idle no fan (no
eth)

5.02 280 1.4

idle w/ fan (no
eth)

5.02 360 1.8

idle no fan (eth) 5.02 322 1.6

idle w/ fan (eth) 5.02 400 2.0

full CPU load no
fan (eth)

5.02 900 4.5

full CPU load w/
fan (eth)

5.02 970 4.9

ODROID XU+E Power (Sensors and "Smart Power")

• Load (1,2,3,4) cores and the a compilation test while
monitoring power (Watts versus time)

ARM Performance

• We are running two types of tests:

• A full CMS job doing event generation and simulation
("GEN-SIM") of Minimum Bias events, with ROOT output
turned off (due to remaining dictionary issues) - We run in
single threaded mode and extrapolate to 4 cores, due to
2GB memory constraint

• Multithreaded Geant4 (Geant4-MT) "FullCMS" benchmark,
with single pions - This fits easily in the memory and we
can test vs #cores

Cores TDP
Gen-Sim
Evt/min/

core

Gen-Sim
Evt/min/

W

G4MT
Evt/min
(threads)

G4MT
Evt/min/

W

ODROID
U2 4 4W 1.14 1.14 34.2 (4) 8.6

ODROID
XU+E 4/4 5.5W? 45 (4)

(est.) 8.2

dual Xeon
L5520 2x4 120W 3.50 0.23 307.2

(16) 2.6

dual Xeon
E5-2630L 2x6 190W 3.33 0.21

ARM Performance - Scalability vs #cores

• Use Geant4-MT (FullCMS) and run with 1 thread, 2 threads, 3
threads, 4 threads, on ODROID U2 board

• See also "Geant4 - Towards major release 10" talk (G.Cosmo)
on Thursday. (For G4, these are preliminary numbers!)

Scalability test on ODROID XU+E

• Again use Geant4-MT (FullCMS) and run with 1 thread, 2 threads,
3 threads, 4 threads.

• Here one core turned itself off (overheating?), still under
investigation. For full rate, we extrapolate from 3 to 4 cores.

IgProf on ARMv7/32bit - http://igprof.org

• We now have basic support for IgProf on ARMv7, memory
profiling works, still debugging performance profiling

DMTCP
• Distributed MultiThreaded
CheckPointing package (DMTCP),
developed at Northeastern University
(NEU), http://dmtcp.sourceforge.net

Userspace checkpointing, no

kernel-level access required
Checkpoints multithreaded

applications
Checkpoints distributed

applications

Minimum runtime overhead

Optional compression of
checkpoint images

Key Features

Open source

Can handle fork, exec, ssh,

open file descriptors,

TCP/IP sockets, etc.

Works on linux and

supports a wide range of

kernels

DMTCP 2.0

• DMTCP version 2.0 supports both application initiated
checkpoints and, and via the use of plugins, flexible
detach and reconnect to external resources.

• ARMv7 is also supported, along with x86-64, Intel MIC

Xeon Phi (7110P)

• 61 in-order lightweight cores with big vector
units, coprocessor packaging on PCIe bus,
16GB GDDR5 memory

• Practical difficulties even to play with it:

• Cross compilation from x86-64 required

• Intel compiler required

• No software environment available

• Offload vs direct running on the card (future?)

Xeon Phi

• Probably not sensible (or performant) to run entire CMS
applications on the Xeon Phi, but it would facilitate tests to
have some software development environment

• Solution: produce a CMSSW release subset with a smaller
set of externals available (cross-compiled) and a subset of
the CMSSW itself (code which compiles with icc)

• Mechanically it implies that one can create a SCRAM
development area on the x86-64 host and code checked
out and built will automatically be cross compiled for the
Xeon Phi

Intel Compiler

• We began using icc 13.1.3, which had various problems with
C++11. We then switched to icc 14.0.0, where the C++11
issues are resolved, but we were stopped by:

• http://software.intel.com/en-us/forums/topic/472385

• Aside: our experience with the Intel compiler has never been
very good (going back ~10 years!) It lives up to its reputation
as only a "benchmark compiler": compilation of real C++
codes almost always reveals non-compliance bugs, crashes,
etc. Even if the bug above is fixed, we are at the mercy of
Intel's release schedule (unlike gcc, where we can patch and
move on).

Xeon Phi - CMSSW release subset status

• Release CMSSW_7_0_0_pre5 for slc6_mic_gcc481
architecture is available

• Externals: zlib bz2lib openssl expat readline sqlite db4 gdbm
autotools python pcre xz libjpg xerces-c gccxml gsl ncurses
pacparser photos pythia6 libpng libxml2 freetype lhapdf gmake
cppunit fftw3 libuuid libtiff frontier_client xrootd boost clhep
hepmc root fastjet heppdt nspr vdt sigcpp pythia8 tauola
geant4 charybdis herwig classlib elementtree roofit coral (not all
125 yet, though)

• Should help facilitate some types of prototyping on Xeon Phi,
without having to start from main() and by-hand Makefile

Cross-compilation notes

• Mostly external were build by just setting CXX="icpc -fPIC -mmic" and CC="icc -fPIC -
mmic" and --host=x86_64-k1om-linux to configure scripts for cross compilation

• Boost: Patched couple of files [b] and used TOOLSET intel

• Python: Needs to build it twice, once for build system and once for Xeon Phi cross
compilation.

• Fastjet: without -msse3

• GSL: Fixed configure script to not run test when cross-compiling

• OpenSSL: Configured w/o -fstack-protector and --with-krb5-flavor

• Root: Patched to build few executables without -mmic, Built without fftw3,castor and
dcap dependency. Configured for linuxx8664k1omicc along with couple of patches to
use freetype and pcre from cms externals. Pass -mmic option to icc fortran compiler

Xeon Phi Integration
Build

• To avoid regressions
relative to compilation
with the Intel compiler,
and facilitate testing
with the latest code we
have also set up an
integration build for the
Xeon Phi.

• 369 out of 1106
packages compile.

Toy Framework Scale Test

Real CMS code with RooFit and OpenMP
• As a test with real code, we took a fitting example: photon energy regression

training (for Higgs->gamma gamma) via a ROOT macro

• The macro uses a compiled library (a Gradient Boosted Regression (GBR)
Likelihood implementation) and some steering code in the form of a ROOT
macro (using Roofit). On a more standard x86 machine, the macro is run
using ACLiC ROOT to compile the steering code, and then call the library.

• This turned out as not possible on the MIC, since ACLiC needs a compiler,
which we had only installed on the hosting machine; we had hence to revert
to fully compiled code. OpenMP is standard mode starts a number of threads
equal to the number of logical cores the system sees, 243 in our case.

• While resulsts are not conclusive at the moment, we have been able to see
machine load level as high as 20% (via micsmc).

Summary

• We have put together software ports for both small
ARMv7 development boards and a basic software
environment for testing the Xeon Phi

• We have obtained some first benchmarks of applications
on the ARMv7 processors and have begun to run and test
applications on the Xeon Phi.

