

⚫Split large tuples into columns,
⚫One or more columns per variable

 ⚫Efficiently combine columns
 into tuples on request

 ⚫Add new columns instead of
 reprocessing or running
 manual fixes

 ⚫Reduce the immense
 pressure on developers
 to get (almost) everything
 right in the first go
 in the (re)processing

Fi
nd
 u
s
on
 g
it
hu
b!

The Drillbit
Column Store

Johannes Ebke & Peter Waller

drillb.it

lots of data

d
at

a & d
at a

B
U
G
F
I
X

M
O
M
E
N
T
U
M

C
O
R
R
E
C
T
E
D

My Dataset

⚫Split large tuples into columns,
⚫One or more columns per variable

 ⚫Efficiently combine columns
 into tuples on request

 ⚫Add new columns instead of
 reprocessing or running
 manual fixes

 ⚫Reduce the immense
 pressure on developers
 to get (almost) everything
 right in the first go
 in the (re)processing

Core Requirements for Drillbit

Significant concerns:

I Speed and scalability:
“more data analysed faster, in more ways, by more physicists”

I Provide guarantees for original dataset equality:
“which data are in your analysis?”

I Provide reproducibility:
“how was this data obtained from raw data?”

I Organize the Chaos of “last-minute” corrections:
“shareable, versioned columns”

This Talk

Low-level techniques for columnar data handling

Poster

Poster “A novel dynamic event data model using the Drillbit column
store” deals more with guarantees and reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 13

Core Requirements for Drillbit

Significant concerns:

I Speed and scalability:
“more data analysed faster, in more ways, by more physicists”

I Provide guarantees for original dataset equality:
“which data are in your analysis?”

I Provide reproducibility:
“how was this data obtained from raw data?”

I Organize the Chaos of “last-minute” corrections:
“shareable, versioned columns”

This Talk

Low-level techniques for columnar data handling

Poster

Poster “A novel dynamic event data model using the Drillbit column
store” deals more with guarantees and reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 13

Core Requirements for Drillbit

Significant concerns:

I Speed and scalability:
“more data analysed faster, in more ways, by more physicists”

I Provide guarantees for original dataset equality:
“which data are in your analysis?”

I Provide reproducibility:
“how was this data obtained from raw data?”

I Organize the Chaos of “last-minute” corrections:
“shareable, versioned columns”

This Talk

Low-level techniques for columnar data handling

Poster

Poster “A novel dynamic event data model using the Drillbit column
store” deals more with guarantees and reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 13

Core Requirements for Drillbit

Significant concerns:

I Speed and scalability:
“more data analysed faster, in more ways, by more physicists”

I Provide guarantees for original dataset equality:
“which data are in your analysis?”

I Provide reproducibility:
“how was this data obtained from raw data?”

I Organize the Chaos of “last-minute” corrections:
“shareable, versioned columns”

This Talk

Low-level techniques for columnar data handling

Poster

Poster “A novel dynamic event data model using the Drillbit column
store” deals more with guarantees and reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 13

Core Requirements for Drillbit

Significant concerns:

I Speed and scalability:
“more data analysed faster, in more ways, by more physicists”

I Provide guarantees for original dataset equality:
“which data are in your analysis?”

I Provide reproducibility:
“how was this data obtained from raw data?”

I Organize the Chaos of “last-minute” corrections:
“shareable, versioned columns”

This Talk

Low-level techniques for columnar data handling

Poster

Poster “A novel dynamic event data model using the Drillbit column
store” deals more with guarantees and reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 13

Outline

1 Motivation / Why would we benefit from yet another data format?

2 Inspiration / How can we build it?

3 Validation / How good is it?

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 13

Outline

1 Motivation / Why would we benefit from yet another data format?

2 Inspiration / How can we build it?

3 Validation / How good is it?

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 6 / 13

Technical Basis

Inspiration by a Google Paper:

Dremel: Interactive Analysis of Web-Scale Datasets

@ http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

I Impressive performance numbers: 24× 109 nested records with 530
fields each in a datacenter with 2900 nodes lets aggregation queries
run in ≈ 2 seconds.

I Scales to petabytes of data.

How do they do it?

I Speed: columnar data layout + parallel processing of data

I Structure: novel columnar storage representation for nested records

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 7 / 13

http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

Technical Basis

Inspiration by a Google Paper:

Dremel: Interactive Analysis of Web-Scale Datasets

@ http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

I Impressive performance numbers: 24× 109 nested records with 530
fields each in a datacenter with 2900 nodes lets aggregation queries
run in ≈ 2 seconds.

I Scales to petabytes of data.

How do they do it?

I Speed: columnar data layout + parallel processing of data

I Structure: novel columnar storage representation for nested records

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 7 / 13

http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

Technical Basis

Inspiration by a Google Paper:

Dremel: Interactive Analysis of Web-Scale Datasets

@ http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

I Impressive performance numbers: 24× 109 nested records with 530
fields each in a datacenter with 2900 nodes lets aggregation queries
run in ≈ 2 seconds.

I Scales to petabytes of data.

How do they do it?

I Speed: columnar data layout + parallel processing of data

I Structure: novel columnar storage representation for nested records

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 7 / 13

http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf

Columnar Storage Representation

Example of a data structure to be
saved:

repeated message event {

int32 run_number;

float32 total_energy;

repeated message electrons {

double pt, eta, phi;

repeated double hits_timing;

...

Resulting columns:

event.run_number

event.total_energy

event.electrons.pt

event.electrons.eta

event.electrons.phi

event.electrons.hits_timing

 Meta
Data

 C
olumn

Data
+

⚫Default Name
⚫Datatype
⚫Block UUID
⚫Object UUID(s)
⚫Depth/Level
 information:
 ~0-4 bit/datum

Pure array of
data, e.g. as
float32

Z
I
P

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 8 / 13

Columnar Storage Representation

Example of a data structure to be
saved:

repeated message event {

int32 run_number;

float32 total_energy;

repeated message electrons {

double pt, eta, phi;

repeated double hits_timing;

...

Resulting columns:

event.run_number

event.total_energy

event.electrons.pt

event.electrons.eta

event.electrons.phi

event.electrons.hits_timing

 Meta
Data

 C
olumn

Data
+

⚫Default Name
⚫Datatype
⚫Block UUID
⚫Object UUID(s)
⚫Depth/Level
 information:
 ~0-4 bit/datum

Pure array of
data, e.g. as
float32

Z
I
P

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 8 / 13

Columnar Storage Representation

Example of a data structure to be
saved:

repeated message event {

int32 run_number;

float32 total_energy;

repeated message electrons {

double pt, eta, phi;

repeated double hits_timing;

...

Resulting columns:

event.run_number

event.total_energy

event.electrons.pt

event.electrons.eta

event.electrons.phi

event.electrons.hits_timing

 Meta
Data

 C
olumn

Data
+

⚫Default Name
⚫Datatype
⚫Block UUID
⚫Object UUID(s)
⚫Depth/Level
 information:
 ~0-4 bit/datum

Pure array of
data, e.g. as
float32

Z
I
P

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 8 / 13

Outline

1 Motivation / Why would we benefit from yet another data format?

2 Inspiration / How can we build it?

3 Validation / How good is it?

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 9 / 13

Evaluation on real data

Results of initial implementation of the Dremel Algorithm:

I Gain of −20% in size with identical compression
on average over the set of all ATLAS ntuples

I Processing speed with a TTree-compatible interface
on par with native TTree

I Skimming is easy, Slimming and thinning are literally trivial

Current Status:

I ROOT → Columns → ROOT round-trip for all basic data types
and their (nested) std::vectors

I Implemented in ≈ 2kLOC C++

I TTree * t = DrillbitTree(files); // functional in TSelector

Other possible gains:

I Possibility to do cache-efficient computations on subset of variables

I Many opportunities to use multiple cores

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 13

Evaluation on real data

Results of initial implementation of the Dremel Algorithm:

I Gain of −20% in size with identical compression
on average over the set of all ATLAS ntuples

I Processing speed with a TTree-compatible interface
on par with native TTree

I Skimming is easy, Slimming and thinning are literally trivial

Current Status:

I ROOT → Columns → ROOT round-trip for all basic data types
and their (nested) std::vectors

I Implemented in ≈ 2kLOC C++

I TTree * t = DrillbitTree(files); // functional in TSelector

Other possible gains:

I Possibility to do cache-efficient computations on subset of variables

I Many opportunities to use multiple cores

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 13

Evaluation on real data

Results of initial implementation of the Dremel Algorithm:

I Gain of −20% in size with identical compression
on average over the set of all ATLAS ntuples

I Processing speed with a TTree-compatible interface
on par with native TTree

I Skimming is easy, Slimming and thinning are literally trivial

Current Status:

I ROOT → Columns → ROOT round-trip for all basic data types
and their (nested) std::vectors

I Implemented in ≈ 2kLOC C++

I TTree * t = DrillbitTree(files); // functional in TSelector

Other possible gains:

I Possibility to do cache-efficient computations on subset of variables

I Many opportunities to use multiple cores

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 13

Evaluation on real data

Results of initial implementation of the Dremel Algorithm:

I Gain of −20% in size with identical compression
on average over the set of all ATLAS ntuples

I Processing speed with a TTree-compatible interface
on par with native TTree

I Skimming is easy, Slimming and thinning are literally trivial

Current Status:

I ROOT → Columns → ROOT round-trip for all basic data types
and their (nested) std::vectors

I Implemented in ≈ 2kLOC C++

I TTree * t = DrillbitTree(files); // functional in TSelector

Other possible gains:

I Possibility to do cache-efficient computations on subset of variables

I Many opportunities to use multiple cores

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 13

Evaluation on real data

Results of initial implementation of the Dremel Algorithm:

I Gain of −20% in size with identical compression
on average over the set of all ATLAS ntuples

I Processing speed with a TTree-compatible interface
on par with native TTree

I Skimming is easy, Slimming and thinning are literally trivial

Current Status:

I ROOT → Columns → ROOT round-trip for all basic data types
and their (nested) std::vectors

I Implemented in ≈ 2kLOC C++

I TTree * t = DrillbitTree(files); // functional in TSelector

Other possible gains:

I Possibility to do cache-efficient computations on subset of variables

I Many opportunities to use multiple cores

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 13

Evaluation on real data

Results of initial implementation of the Dremel Algorithm:

I Gain of −20% in size with identical compression
on average over the set of all ATLAS ntuples

I Processing speed with a TTree-compatible interface
on par with native TTree

I Skimming is easy, Slimming and thinning are literally trivial

Current Status:

I ROOT → Columns → ROOT round-trip for all basic data types
and their (nested) std::vectors

I Implemented in ≈ 2kLOC C++

I TTree * t = DrillbitTree(files); // functional in TSelector

Other possible gains:

I Possibility to do cache-efficient computations on subset of variables

I Many opportunities to use multiple cores

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 13

Ideal World - A Columnar Event Data Model

♥ Version tree of event objects and variables
combined with links to tools that calculate these

l Variables and last-minute corrections on objects are
shared as data columns instead of having to reprocess
the whole data every time

I Example tree entry that could be shared between analysts:

· hww/muon@r2 := (perf muon@r2321 || isolation :=

HWWMuonIsolationTool@v00-02-03(perf muon@r2321))

· ebke/muon/isolation@r2 :=

git://../my tool@r2312(hww/muon@r2,

event info/vertices@r2)

� get data --variables hww@r42 --datasets hww@r42

→ retrieves ∼few GB ntuple to analyse

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 11 / 13

Ideal World - A Columnar Event Data Model

♥ Version tree of event objects and variables
combined with links to tools that calculate these

l Variables and last-minute corrections on objects are
shared as data columns instead of having to reprocess
the whole data every time

I Example tree entry that could be shared between analysts:

· hww/muon@r2 := (perf muon@r2321 || isolation :=

HWWMuonIsolationTool@v00-02-03(perf muon@r2321))

· ebke/muon/isolation@r2 :=

git://../my tool@r2312(hww/muon@r2,

event info/vertices@r2)

� get data --variables hww@r42 --datasets hww@r42

→ retrieves ∼few GB ntuple to analyse

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 11 / 13

Ideal World - A Columnar Event Data Model

♥ Version tree of event objects and variables
combined with links to tools that calculate these

l Variables and last-minute corrections on objects are
shared as data columns instead of having to reprocess
the whole data every time

I Example tree entry that could be shared between analysts:

· hww/muon@r2 := (perf muon@r2321 || isolation :=

HWWMuonIsolationTool@v00-02-03(perf muon@r2321))

· ebke/muon/isolation@r2 :=

git://../my tool@r2312(hww/muon@r2,

event info/vertices@r2)

� get data --variables hww@r42 --datasets hww@r42

→ retrieves ∼few GB ntuple to analyse

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 11 / 13

Ideal World - A Columnar Event Data Model

♥ Version tree of event objects and variables
combined with links to tools that calculate these

l Variables and last-minute corrections on objects are
shared as data columns instead of having to reprocess
the whole data every time

I Example tree entry that could be shared between analysts:

· hww/muon@r2 := (perf muon@r2321 || isolation :=

HWWMuonIsolationTool@v00-02-03(perf muon@r2321))

· ebke/muon/isolation@r2 :=

git://../my tool@r2312(hww/muon@r2,

event info/vertices@r2)

� get data --variables hww@r42 --datasets hww@r42

→ retrieves ∼few GB ntuple to analyse

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 11 / 13

Ideal World - A Columnar Event Data Model

♥ Version tree of event objects and variables
combined with links to tools that calculate these

l Variables and last-minute corrections on objects are
shared as data columns instead of having to reprocess
the whole data every time

I Example tree entry that could be shared between analysts:

· hww/muon@r2 := (perf muon@r2321 || isolation :=

HWWMuonIsolationTool@v00-02-03(perf muon@r2321))

· ebke/muon/isolation@r2 :=

git://../my tool@r2312(hww/muon@r2,

event info/vertices@r2)

� get data --variables hww@r42 --datasets hww@r42

→ retrieves ∼few GB ntuple to analyse

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 11 / 13

Ideal World - A Columnar Event Data Model

♥ Version tree of event objects and variables
combined with links to tools that calculate these

l Variables and last-minute corrections on objects are
shared as data columns instead of having to reprocess
the whole data every time

I Example tree entry that could be shared between analysts:

· hww/muon@r2 := (perf muon@r2321 || isolation :=

HWWMuonIsolationTool@v00-02-03(perf muon@r2321))

· ebke/muon/isolation@r2 :=

git://../my tool@r2312(hww/muon@r2,

event info/vertices@r2)

� get data --variables hww@r42 --datasets hww@r42

→ retrieves ∼few GB ntuple to analyse

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 11 / 13

Challenges Ahead

Back to reality - possible short-term actions:

I Use columnar datasets as a transparent intermediate storage format
from which to generate custom ntuples

I Consider setting up a columnar dataset pool for an analysis group,
e.g. publishing corrections as new columns so not everyone has to run
the correction code

I Use columnar storage in new experiment software or analysis projects

I Set up data versioning for reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 12 / 13

Challenges Ahead

Back to reality - possible short-term actions:

I Use columnar datasets as a transparent intermediate storage format
from which to generate custom ntuples

I Consider setting up a columnar dataset pool for an analysis group,
e.g. publishing corrections as new columns so not everyone has to run
the correction code

I Use columnar storage in new experiment software or analysis projects

I Set up data versioning for reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 12 / 13

Challenges Ahead

Back to reality - possible short-term actions:

I Use columnar datasets as a transparent intermediate storage format
from which to generate custom ntuples

I Consider setting up a columnar dataset pool for an analysis group,
e.g. publishing corrections as new columns so not everyone has to run
the correction code

I Use columnar storage in new experiment software or analysis projects

I Set up data versioning for reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 12 / 13

Challenges Ahead

Back to reality - possible short-term actions:

I Use columnar datasets as a transparent intermediate storage format
from which to generate custom ntuples

I Consider setting up a columnar dataset pool for an analysis group,
e.g. publishing corrections as new columns so not everyone has to run
the correction code

I Use columnar storage in new experiment software or analysis projects

I Set up data versioning for reproducibility

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 12 / 13

Summary

Thank you for your attention!
Questions or Comments welcome.

Summary:

I central data + distributed code might not be as good as
distributed data + distributed code

I The Dremel data representation published by Google is great for our
use case, and would provide a solid and simple foundation for a strong
and future-proof architecture

I We believe collaboration on version-controlled columns has the
potential to make physicists less unhappy

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 13 / 13

Summary

Thank you for your attention!
Questions or Comments welcome.

Summary:

I central data + distributed code might not be as good as
distributed data + distributed code

I The Dremel data representation published by Google is great for our
use case, and would provide a solid and simple foundation for a strong
and future-proof architecture

I We believe collaboration on version-controlled columns has the
potential to make physicists less unhappy

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 13 / 13

Summary

Thank you for your attention!
Questions or Comments welcome.

Summary:

I central data + distributed code might not be as good as
distributed data + distributed code

I The Dremel data representation published by Google is great for our
use case, and would provide a solid and simple foundation for a strong
and future-proof architecture

I We believe collaboration on version-controlled columns has the
potential to make physicists less unhappy

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 13 / 13

Summary

Thank you for your attention!
Questions or Comments welcome.

Summary:

I central data + distributed code might not be as good as
distributed data + distributed code

I The Dremel data representation published by Google is great for our
use case, and would provide a solid and simple foundation for a strong
and future-proof architecture

I We believe collaboration on version-controlled columns has the
potential to make physicists less unhappy

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 13 / 13

Summary

Thank you for your attention!
Questions or Comments welcome.

Summary:

I central data + distributed code might not be as good as
distributed data + distributed code

I The Dremel data representation published by Google is great for our
use case, and would provide a solid and simple foundation for a strong
and future-proof architecture

I We believe collaboration on version-controlled columns has the
potential to make physicists less unhappy

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 13 / 13

Bonus Slides

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 1 / 10

Components of the A4 Library

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 2 / 10

Protocol Buffer Message Format

message Lepton {

optional double pt = 1;

optional double eta = 2;

optional double phi = 3;

optional int32 charge = 4;

}

message PhysicsEvent {

optional int32 run_number = 1;

optional int32 event_number = 2;

repeated Lepton electrons = 5;

repeated Lepton muons = 6;

}

Example of a protobuf message definition for
a Physics event

PhysicsEvent e;

e.set_run_number(105200);

Lepton * l = e.add_muons();

l->set_pt(23.2);

l->pt() == 23.2;

Example of C++ code using the
compiled version of the message

definition

⇒ Separation of Data structure
definition and Serialization Code

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 3 / 10

The A4 file and IO Library

I Protobuf messages are not self-describing

– but the descriptions can be stored in protobuf messages!

⇒ A4 files contain descriptions of all contained messages
and are self-contained.

I Native support for metadata messages, so there can be
separation of histograms by sample in one file⊕
Can be concatenated with “cat” - merging made easy.

I Can be up to 6 times faster than ROOT IO∗

∗conditions apply: You have to use > 40% of the event data..

I Conversion from and to ROOT trees / histograms included

J.E., Peter Waller, 2012 J. Phys.: Conf. Ser. 396 022012;
http://arxiv.org/abs/1208.1600

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 10

http://arxiv.org/abs/1208.1600

The A4 file and IO Library

I Protobuf messages are not self-describing
– but the descriptions can be stored in protobuf messages!

⇒ A4 files contain descriptions of all contained messages
and are self-contained.

I Native support for metadata messages, so there can be
separation of histograms by sample in one file⊕
Can be concatenated with “cat” - merging made easy.

I Can be up to 6 times faster than ROOT IO∗

∗conditions apply: You have to use > 40% of the event data..

I Conversion from and to ROOT trees / histograms included

J.E., Peter Waller, 2012 J. Phys.: Conf. Ser. 396 022012;
http://arxiv.org/abs/1208.1600

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 10

http://arxiv.org/abs/1208.1600

The A4 file and IO Library

I Protobuf messages are not self-describing
– but the descriptions can be stored in protobuf messages!

⇒ A4 files contain descriptions of all contained messages
and are self-contained.

I Native support for metadata messages, so there can be
separation of histograms by sample in one file⊕
Can be concatenated with “cat” - merging made easy.

I Can be up to 6 times faster than ROOT IO∗

∗conditions apply: You have to use > 40% of the event data..

I Conversion from and to ROOT trees / histograms included

J.E., Peter Waller, 2012 J. Phys.: Conf. Ser. 396 022012;
http://arxiv.org/abs/1208.1600

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 10

http://arxiv.org/abs/1208.1600

The A4 file and IO Library

I Protobuf messages are not self-describing
– but the descriptions can be stored in protobuf messages!

⇒ A4 files contain descriptions of all contained messages
and are self-contained.

I Native support for metadata messages, so there can be
separation of histograms by sample in one file

⊕
Can be concatenated with “cat” - merging made easy.

I Can be up to 6 times faster than ROOT IO∗

∗conditions apply: You have to use > 40% of the event data..

I Conversion from and to ROOT trees / histograms included

J.E., Peter Waller, 2012 J. Phys.: Conf. Ser. 396 022012;
http://arxiv.org/abs/1208.1600

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 10

http://arxiv.org/abs/1208.1600

The A4 file and IO Library

I Protobuf messages are not self-describing
– but the descriptions can be stored in protobuf messages!

⇒ A4 files contain descriptions of all contained messages
and are self-contained.

I Native support for metadata messages, so there can be
separation of histograms by sample in one file⊕
Can be concatenated with “cat” - merging made easy.

I Can be up to 6 times faster than ROOT IO∗

∗conditions apply: You have to use > 40% of the event data..

I Conversion from and to ROOT trees / histograms included

J.E., Peter Waller, 2012 J. Phys.: Conf. Ser. 396 022012;
http://arxiv.org/abs/1208.1600

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 10

http://arxiv.org/abs/1208.1600

The A4 file and IO Library

I Protobuf messages are not self-describing
– but the descriptions can be stored in protobuf messages!

⇒ A4 files contain descriptions of all contained messages
and are self-contained.

I Native support for metadata messages, so there can be
separation of histograms by sample in one file⊕
Can be concatenated with “cat” - merging made easy.

I Can be up to 6 times faster than ROOT IO∗

∗conditions apply: You have to use > 40% of the event data..

I Conversion from and to ROOT trees / histograms included

J.E., Peter Waller, 2012 J. Phys.: Conf. Ser. 396 022012;
http://arxiv.org/abs/1208.1600

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 4 / 10

http://arxiv.org/abs/1208.1600

A4 Histograms and Object Store

Small selection of cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions:

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}
S.T<Cutflow>("cf").passed("initial"); // create cutflow

plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 10

A4 Histograms and Object Store

Small selection of cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions:

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}
S.T<Cutflow>("cf").passed("initial"); // create cutflow

plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 10

A4 Histograms and Object Store

Small selection of cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions:

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}

S.T<Cutflow>("cf").passed("initial"); // create cutflow

plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 10

A4 Histograms and Object Store

Small selection of cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions:

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}
S.T<Cutflow>("cf").passed("initial"); // create cutflow

plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 10

A4 Histograms and Object Store

Small selection of cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions:

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}
S.T<Cutflow>("cf").passed("initial"); // create cutflow

plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 10

A4 Histograms and Object Store

Small selection of cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions:

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}
S.T<Cutflow>("cf").passed("initial"); // create cutflow

plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 5 / 10

A4 Histograms and Object Store II

S.T<H1>("el ", 1, " pt")(500,0,100,"p T [GeV]").fill(pt);

Technical details:
I Histogram pointers stored in a custom hierarchical hash table

I C++11 variadic templates allow very fast “pseudo-concatenation”
of strings and numbers

I A “const char pointer constancy check” allows safe lookups by
pointer value with no string comparisons in the event loop

I One-line initialization is skipped by a single jmp instruction!

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 6 / 10

A4 Histograms and Object Store II

S.T<H1>("el ", 1, " pt")(500,0,100,"p T [GeV]").fill(pt);

Technical details:
I Histogram pointers stored in a custom hierarchical hash table

I C++11 variadic templates allow very fast “pseudo-concatenation”
of strings and numbers

I A “const char pointer constancy check” allows safe lookups by
pointer value with no string comparisons in the event loop

I One-line initialization is skipped by a single jmp instruction!

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 6 / 10

A4 Histograms and Object Store II

S.T<H1>("el ", 1, " pt")(500,0,100,"p T [GeV]").fill(pt);

Technical details:
I Histogram pointers stored in a custom hierarchical hash table

I C++11 variadic templates allow very fast “pseudo-concatenation”
of strings and numbers

I A “const char pointer constancy check” allows safe lookups by
pointer value with no string comparisons in the event loop

I One-line initialization is skipped by a single jmp instruction!

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 6 / 10

A4 Histograms and Object Store II

S.T<H1>("el ", 1, " pt")(500,0,100,"p T [GeV]").fill(pt);

Technical details:
I Histogram pointers stored in a custom hierarchical hash table

I C++11 variadic templates allow very fast “pseudo-concatenation”
of strings and numbers

I A “const char pointer constancy check” allows safe lookups by
pointer value with no string comparisons in the event loop

I One-line initialization is skipped by a single jmp instruction!

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 6 / 10

A4 Histograms and Object Store II

S.T<H1>("el ", 1, " pt")(500,0,100,"p T [GeV]").fill(pt);

Technical details:
I Histogram pointers stored in a custom hierarchical hash table

I C++11 variadic templates allow very fast “pseudo-concatenation”
of strings and numbers

I A “const char pointer constancy check” allows safe lookups by
pointer value with no string comparisons in the event loop

I One-line initialization is skipped by a single jmp instruction!

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 6 / 10

A4 Processing and CLI

A4 Processing scaffold:

I Scaffold to quickly make useable analysis executables

I Handles command line arguments

I Provides multithreading

I Makes metadata available at analysis time

I Automatically does the re-running for the systematic function

! Due for a redesign soon to enable in-program analysis composition

A4 command line tools:

I a4copy, a4diff, a4dump, a4info, a4merge, a42root, a4results2root,
a4reweight...

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 7 / 10

A4 Histograms and Object Store

Cool things that are possible:

I One-line histogram & cutflow storage, initialization, and filling

I “Code Locality” for histograms and cutflows: Easy to modify existing
analyses and to reuse histogram definitions in functions

I Support for single-line systematic uncertainty evaluation

Technical details:
I Histogram pointers stored in a custom hierarchical hash table

I C++11 variadic templates allow very fast “pseudo-concatenation”
of strings and numbers

I A “const char pointer constancy check” allows safe lookups by
pointer value with no string comparisons in the event loop

I One-line initialization is skipped by a single jmp instruction!

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 8 / 10

Example Histogram code

S.set weight(event weight); // Set event weight for everything

// create, store and fill a histogram with title and axis label

S.T<H1>("m ee")("ee-Mass")(500,0,100,"m ee").fill(m);

// Define and use a function for plotting many histograms

void plot(ObjectStore FS, ALorentzVector v) {
FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p T")(500,0,100,"p T [GeV]").fill(v.pt());

}
plot(S("initial/muon0 "), mu0); // gives initial/muon0 pt

plot(S("initial/muon", 1, " "), mu1);

plot(S("initial/dimuon "), mu0 + mu1);

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0 "), mu0);

if (systematic("mu scale up")) mu0 *= 1.1;

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 9 / 10

Summary and Conclusion

The A4 Library:

I A4 files are fast self-contained protobuf containers

I The A4 ObjectStore is a fast way to generate a lot of histograms
using few lines of code

I A4 processing helps to make an analysis a nice unix command line tool

Development:

I Implementing Google Dremel columnar splitting to A4 files

I Conceptual development of columnar store EDM and analysis

⇒ A lot of challenging problems are ahead

Thank you for your attention

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 10

Summary and Conclusion

The A4 Library:

I A4 files are fast self-contained protobuf containers

I The A4 ObjectStore is a fast way to generate a lot of histograms
using few lines of code

I A4 processing helps to make an analysis a nice unix command line tool

Development:

I Implementing Google Dremel columnar splitting to A4 files

I Conceptual development of columnar store EDM and analysis

⇒ A lot of challenging problems are ahead

Thank you for your attention

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 10

Summary and Conclusion

The A4 Library:

I A4 files are fast self-contained protobuf containers

I The A4 ObjectStore is a fast way to generate a lot of histograms
using few lines of code

I A4 processing helps to make an analysis a nice unix command line tool

Development:

I Implementing Google Dremel columnar splitting to A4 files

I Conceptual development of columnar store EDM and analysis

⇒ A lot of challenging problems are ahead

Thank you for your attention

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 10

Summary and Conclusion

The A4 Library:

I A4 files are fast self-contained protobuf containers

I The A4 ObjectStore is a fast way to generate a lot of histograms
using few lines of code

I A4 processing helps to make an analysis a nice unix command line tool

Development:

I Implementing Google Dremel columnar splitting to A4 files

I Conceptual development of columnar store EDM and analysis

⇒ A lot of challenging problems are ahead

Thank you for your attention

Johannes Ebke & Peter Waller Drillbit Column Store 17.10.2013 10 / 10

	Motivation / Why would we benefit from yet another data format?
	Inspiration / How can we build it?
	Validation / How good is it?
	Appendix

