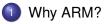
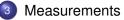
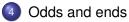
Measurements of the LHCb software stack on the ARM architecture

Marco Clemencic, Ben Couturier, Niko Neufeld, Vijay Kartik Subbiah

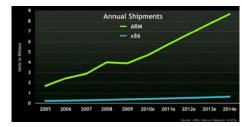
Physics Department CERN CH-1211 Geneva 23, Switzerland


Computing in High Energy and Nuclear Physics, 2013


LHCb software stack on ARM

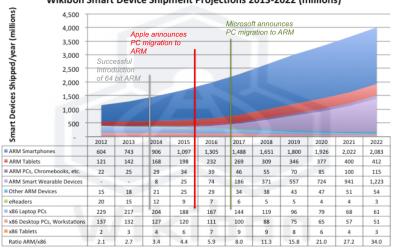

CHEP 2013

Overview



Niko Neufeld (CERN, Geneva, Switzerland)

LHCb software stack on ARM

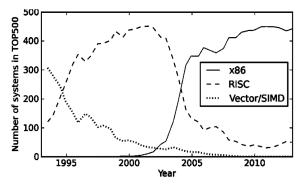

The Market

- Most tablets and smart-phones powered by ARM processors
- 2013 will see more shipments of tablets than laptops
- Server market has virtually no growth, desktops declining

Nightmare in Santa Clara

Wikibon Smart Device Shipment Projections 2013-2022 (millions)

Year


Source: Wikibon 2013, IDC & Garnter 2012 shipments & Wikibon 2013-2022 projections. Assumption: Apple & Microsoft migrate to successful 64-bit ARM.

Niko Neufeld (CERN, Geneva, Switzerland)

Why ARM?

So you believe that Vax, Alpha, MIPS, *your favourite architecture here*, are eternal?

- μ-processors weren't faster
- They were much cheaper and "greener"
- Mobile processors are not faster
- They are much cheaper and greener

CHEP 2013 5 / 19

In practice

The computer-farm of the future

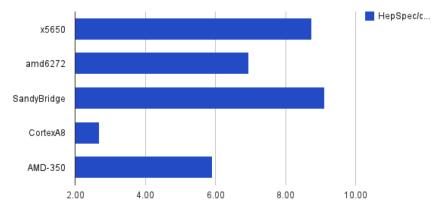
In practice

The computer-farm of the future

Micro-servers

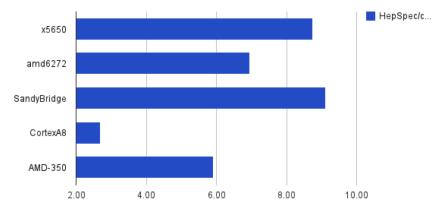
- ARM-based SoCs are widely available now
- Lots of interest in micro-servers (cloud, web-shops)
- Still glue-logic is needed (no fast PCIe/SATA on current SoCs)
- Dense packaging of multiple SoCs
- Example (and used in these tests) Boston Viridis (based on Calxeda)

- 48 SoC, 4 cores 4 GB RAM
- ARM A9 Cortex 1.4 GHz (v7 architecture 32-bit)
- 80 Gb Ethernet switch (10 GigE external)
- Total 192 cores / 192 GB RAM /300 Watt


• redundant power, etc...

CHEP 2013 7 / 19

First look: HEPSpec



Niko Neufeld (CERN, Geneva, Switzerland)

2 **CHEP 2013** 8/19

First look: HEPSpec

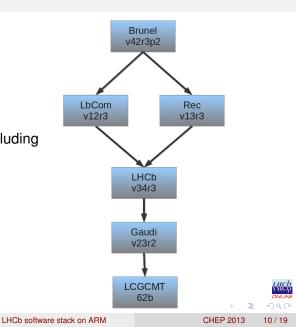
So we need many

Niko Neufeld (CERN, Geneva, Switzerland)

LHCb software stack on ARM

HEP spec is not enough - do the real test

HepSPEC is not necessarily a good test for Online usage


- Online we (currently) run *n* instances of the same application in parallel, where *n* is ≥ number of cores/hyperthreads
- In such a scenario hyperthreading typically adds overproportionally (up to 40% of total machine performance) compared to mixed work-loads
- Need to benchmark a real LHCb work-load: Brunel (the reconstruction program)

CHEP 2013

Measurements

The task

- 3.6 MLOC of code (excluding LCG_CMT)
- ROOT v5.34.05
- gcc 4.7.2, Boost 1.51

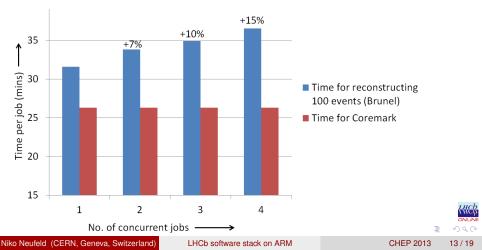
Measurements

The platform

- Remote test
 - CPU = Calxeda EnergyCore (SoC), ARM Cortex-A9 CPU, 4 cores, \approx 1.1 GHz, 4GB RAM
 - Linux cloud12 3.6.10-8.fc18.armv7hl.highbank 1 SMP Tue Jan 29 14:01:38 EST 2013 armv7l armv7l armv7l GNU/Linux
- Local development, CARMA
 - CPU = NVIDIA Tegra 3, a Quad-core ARM Cortex-A9 CPU \approx 1.3 GHz
 - Ubuntu 11.04
 - Linux carma-devkit 3.1.10-carma 2 SMP PREEMPT Fri Aug 31 15:28:42 PDT 2012 armv71 armv71 armv71 GNU/Linux
 - Not a hard-float kernel (not good)

(B) (A) (B) (A)

Single core performance


	CARMA	Viridis	x86 L5520
freq. (GHz)	1.3	1.1	2.27
# cores	4	4	8 (with HT)
total RAM (GB)	4	4	48
time (h)	\sim 10	\sim 2.5	~ 0.5

- Time for reconstructing the same 1000 events in Brunel
- Events read from network share (NFS/AFS)
- Test results stable

Niko Neufeld (CERN, Geneva, Switzerland)

Scaling

- Loading the entire machine with identical jobs
- x86 scales linearly for real cores, HT add about 40%
- ARM memory bandwidth does not scale

Correctness

"Brem Match"	sum		mean/eff^*		rms∕err^*	
	ARMv7	x86_64	ARMv7	x86_64	ARMv7	x86_64
#calos	50085	50085	60.489	60.489	30.140	30.140
#chi2	2.73710 9 e+09	2.73710 5 e+09	5009.1	5009.1	2866.4	2866.4
#links	5464 30	5464 15	659.9 4	659.9 <mark>2</mark>	611.3 <mark>8</mark>	611.3 <mark>3</mark>
#overflow	403843 <mark>4</mark>	403843 <mark>0</mark>	4877. <mark>3</mark>	4877. <mark>2</mark>	5074. <mark>2</mark>	5074. <mark>0</mark>
#tracks	586 10	586 <mark>09</mark>	70.78 <mark>5</mark>	70.784	48.51 <mark>3</mark>	48.51 1

Niko Neufeld (CERN, Geneva, Switzerland)

► ▲ ■ ► ■ • つ Q C CHEP 2013 14 / 19

・ロト ・ 日 ト ・ ヨ ト ・

On the way

- Many small problems with very recent OS releases (FC18, Ubuntu 12)
- Kernel updates a bit more complicated, every platform needs specific patches, because there is no "ARM-PC"
- Obviously problems with closed-source, x86-only, software (NeuroBayes)

- Delicious architecture specific problems for the conaisseur
 - x86-icisms (e.g. sizeof empty struct)
 - Bad instructions issued by compiler (refused by assembler), toolchain problem?
- ROOT (v5.34.05) cintex not working completely (test fails), but subset required by LHCb seems to work.
- Loads of patches left, right and center due to newer compiler, boost, etc...versions

・ロト ・ 四ト ・ ヨト ・ ヨト

Building

- Compile-times are long on ARM. make -j 4 build of ROOT about 30 minutes on Viridis
- x-compiler chain has been setup.
- Problem with "fancy" builds creating and using intermediate binaries
- Can fix this with tweaking binfmt and using a VM
- In practice x-builds are painful for this stack, lots of room for improvement

Summary

- ARM is clearly a "hype" we wanted to do a reality check
- Ported entire LHCb software stack to ARM (v7) on FC18
- Results are correct (up to small rounding errors)
- Single core performance about a factor 5 to 7 slower (compared to now obsolete Nehalem μ-architecture!)
- ARM memory bandwidth does not scale (yet)
- Power promise holds
- ARM-based microservers still need a strong TCO argument to be interesting

CHEP 2013

What's next?

- Improve multi-architecture build (cmake)
- Prepare maintainable, automatised cross-build system
- Wait for establishment of 64-bit ARM micro-servers, redo tests
- Compare with upcoming improved Intel micro-servers

CHEP 2013

Thanks

- Thanks to all members of the SFT group who supported us
- and to Boston HPC, UK, who kindly provided remote access to their Viridis platform

CHEP 2013