20th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2013)

14-18th October 2013, Amsterdam, The Netherlands

Alignment and calibration of CMS detector during collisions at LHC

Roberto Castello (UC Louvain - FNRS, Belgium) on behalf of CMS collaboration

The Compact Muon Solenoid

 From particle identification (muons, electrons, charged and neutral hadrons, photons) to reconstruction of physics objects (muons, electrons, jets ...)

- Very demanding and complex detector:
 - Largest Tracker (76M channels), homogeneous calorimeter (76k cristals)
 - ♦ Transverse momentum resolution: $\sigma(p_T)/p_T$ = 1.5 3% for tracks of p_T ~ 100 GeV
 - ♦ Energy resolution for electrons and photons: $\sigma(E)/E\sim 1\%$

A solid alignment calibration infrastructure has been set up to allow physics analysis fast turn-around

15/10/2013 R.Castello 2

The structure of alignment and calibration workflow

The PROMPT ALIGNMENT and CALIBRATION

The OFFLINE ALIGNMENT and CALIBRATION

The QUASI ON-LINE CALIBRATION

- For high-level Trigger and express stream calibration, using dedicated stream (100 Hz)
- Beam-spot measurement using track based and pixel-only vertexing: very fast, 1 value every 5 LS (~2 min)

The PROMPT ALIGNMENT and CALIBRATION

- For calibration of physics stream: designed to allow updates with short latency
- Based on the delay between express and prompt reco at Tier-o (48h): updated conditions for a given run while the bulk of the data is buffered on disk

The OFFLINE ALIGNMENT and CALIBRATION

- Aiming to provide more stable and improved conditions
- Workflows run on dedicated calibration stream, outputs stored on ORACLE DB
- Event selection tuned according to needs and event content reduced to optimize bandwidth/disk space usage (special AlCaReco format)
- Alignment geometry determined together with inter-dependencies and calorimeter (inter-)calibrations

15/10/2013 R.Castello 4

The prompt Calibration and Alignment workflow

- Low latency workflows run immediately after the data-taking:
 - ♦ beam-spot position → measured frequently (every Lumi Section)
 - ♦ ECAL transparency corrections → measured with laser pulses
- Conditions which need to be monitored (and updating if necessary):
 - ♦ Tracker problematic channels → HV trips/noise
 - ♦ Calorimeter problematic channels → mask hot channels
 - ♦ Pixel alignment → monitoring movements of large structure using tracks
- Update-strategy based on delay between express and prompt reco:
 - Pre-defined data streams out of express used for calibration
 - ♦ Conditions derived in time for being delivered to prompt-reco → within 48h

Updating the Beamspot position

- Measurement delivered every LS, i.e. 23 s (tracks from Express stream)
- x, y position of the beam, along with slopes determined from d- ϕ fit with reconstructed (minimum bias) tracks
- Beam width along with z and $\sigma(z)$ come from fit to primary vertices
- Highly dependent from Pixel alignment (BS is recomputed offline whenever alignment is updated)

Monitoring the Pixel macro structures movements

- Correcting vs time relative pixel half barrels displacements along z
- Monitoring longitudinal separation, mechanically allowed, on a run basis (> 20k events) using unbiased track-to-vertex residuals

• Time dependence of pixel structure alignment accounts for separation as function of time: b-tagging algorithms insensitive to remaining 10 μm effect

Updating transparency corrections for EM calorimeter

- ECAL PbWO4 crystals can temporary loose transparency due to irradiation: less significative in barrel, more pronounced in the endcaps
- Damage/recovery cycles monitored by laser pulsed @ 80Hz (LHC abort gaps) measuring the response (R) variation to the laser light (R/Ro)→ dedicated stream @ HLT level
- Corrections derived within 48h → applied in prompt-reco

Z(ee) mass resolution already quite stable

The offline alignment and calibration challenge

Tracker orientation with respect to magnetic field

- Uncorrected overall tilts of the Tracker relative to magnetic field (flux along global z) could result in biases of the reconstructed track parameters
- The global Tracker orientation is described by the angles θ_x / θ_y , corresponding to rotations around global x/y CMS axis
- Goodness of track fit scans for various tilt angles: $\theta y = 0$, $\theta x = 0.3$ mrad

Alignment of Tracker module and structures

- CMS Tracker is a complex system:
 - ♦ The largest silicon detector ever built, 24k sensors in total
 - ♦ 5(6) rigid body-like + 3 bow parameters: O(200k) free parameters per sensor
- Survey measurement, but expected <10 μm precision using in situ trackbased alignment with by means of minimization algorithms (MillePede II)
- Example: the 2011 alignment campaign (1/fb)
 - Inputs: 15M loosely selected isolated muon tracks, 3M low momentum tracks, 3.6M cosmic ray tracks and 375k muon track pairs from Z
 - Z mass measurement as a constraint
 - Fitting sensor bows and kinks
 - Time dependent (9 intervals) rigid body alignment for large pixel structures
 - ♦ Total CPU 44.5 h, wall clock time 9:50 h

Visualization of bows and kinks

Local performance of Tracker alignment

- Precision estimated from the RMS of the Distributions of the Medians of the Residuals (DMR) for each module (# hits>30): more robust against MS
- Collision tracks and module surface deformation improve local precision in the Pixels w.r.t. previous cosmic rays alignment (2008)

15/10/2013

Alignment of the muon system

- Hardware based: measuring positions of all chambers with respect to a floating network of rigid reference structures ($\sigma_{x/v} < 0.1 \text{ cm}$)
- Track based: minimizing the *residuals* as the difference between measured (with segments) and predicted (i.e. propagated from Tracker) position of the muon in the chamber \rightarrow r- ϕ precision: 100-150 μ m
- Combination (and comparison) of the methods

Improved muon momentum resolution for pT > 200 GeV

15/10/2013 R.Castello 13

Electromagnetic calorimeter calibration

- Inter-calibration of crystals located within the same η ring:
 - φ-symmetry of the energy flow through the ECAL crystals (granularity of ~ 3-4 days)
 - ϕ π o/ $\eta \rightarrow \gamma \gamma$ invariant mass peak (granularity of ~ 2 months)
 - ♦ E(ECAL)/p(tracker): high energy electrons from W(ev) and Z(ee) decays (once in the year)
 - Combination: weighted average of the 3 methods
- Also providing inter-calibration of the η rings (η scale) and determination of energy scale and resolution

Validation on physics performance

Remarkable CMS physics performance after alignment and calibration conditions are injected in the reconstruction

- The alignment and calibration infrastructure proved to be efficient and effective for a fast analysis turnaround during CMS data taking
- The prompt alignment and calibration mechanism:
 - designed for low latency workflow run smoothly during Run1
 - better quality of physics reconstructed objects already during prompt reconstruction
- The offline calibration and alignment procedure:
 - Increasing time/space granularity of the calibrations and thus precision
 - Delivering to reconstruction the best knowledge of detector performance
 - Account for interdependencies among the different calibration and alignment workflow
- Calibration & alignment has been crucial step towards the successful physics program of CMS during 2010-2012
- Revision and amelioration of main workflow is under study

... aiming to keep the high standard at restart of data taking!