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Goals
Better scaling of  system resources as core count increases
Puts less burdens on existing grid sites since one batch slot uses more cores
Potential to use sites with lower available resources

More sharing between cores
Share infrequently updated memory 

conditions
I/O buffers

Share file handles
Share network connections

Minimize changes to existing framework and user facing 
interfaces
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Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules
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Threaded Design
Run multiple transitions, i.e. events, concurrently
Introduces new concepts: Global and Stream

Within one event run multiple modules concurrently
Have to take into account module dependencies
Want to minimize any required changes to module code

Within one module be able to run multiple tasks concurrently

Intel’s Threaded Building Blocks used for all of  the above
Break down work into ‘tasks’ and TBB can run the tasks in parallel
http://threadingbuildingblocks.org

25

http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
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Concurrent Transitions

Global
Sees transitions on a ‘global’ scale

see begin of Run and begin of Lumi when source first reads them
sees end of Run and end of Lumi once all processing has finished for them

Multiple transitions can be running concurrently
Events are not seen ‘globally’

Stream
Processes transitions serially

begin run, begin lumi, events, end lumi, end run
Multiple streams can be running concurrently each with own events

One stream only sees a subset of the events in a job
Present CMS framework is equivalent to running with only one stream
Paths and EndPaths are a per Stream construct

The same module can be shared across Streams
The Stream knows if a module was run for a particular event

26
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Concurrent Modules
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Concurrent Tasks
Can use TBB directly inside a module
TBB will handle scheduling tasks for both modules and sub-modules

TBB has some convenience functions

Can create own tasks for complex algorithms

Users tasks must finish before returning from module

33

std::vector<Results> results(input.size(),Results());
tbb::parallel_for(0U,input.size(), DoWork(results) );

class MyTask : public tbb::task { ... };
...
MyTask* mt = new (tbb::task::allocate_root()) MyTask;
tbb::task::spawn_root_and_wait( mt );
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Scaling: Infinite Cores

32 core AMD Opteron Processor 6128 w/ 64GB RAM

All modules are calling usleep

TBB stops perfect scaling around 2000 simultaneous events (se)
Is using 1.3 threads/simultaneous event

Single threaded framework hits memory limit at 3000 se
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Thread Safety
Data Products
Information passed from module to module
Framework only provides ‘const’ access to data products
‘const’ member functions must be thread safe

Matches C++11 thread-safety guarantee for containers

Modules
Majority of user defined code
Different module varieties define different levels of thread safety

Stream
Global
One
Legacy

36
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Stream Module
Replicate an instance of  a module configuration for each Stream
E.g. if have 8 Streams in a job will have 8 copies of a module

A Stream only processes one Event at a time
A module copy will only be called at most once per event
Member data does not have to be thread safe

One Stream only sees a fraction of  the Events in the job
Therefore a module copy only sees a fraction of the events
Not a problem for most Producers and Filters

Easy to convert from Legacy to Stream interface

Most Filters and Producers should be easy to convert

37

class TrackClusterRemover : public stream::Producer<> {
... };
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Global Module
One instance of  a module shared by all Streams
One module sees all Runs, LuminosityBlocks and Events

All member functions and member data must be thread-safe
Member functions called on each transition are ‘const’
The interface provides ways to help you with thread-safety

per transition caching

Only use if
Need to share as much memory across Streams as possible or
Algorithm must see all Runs, LuminosityBlocks or Events

High performance OutputModules would be Global
38

class Counter : public global::Analyzer<StreamCache<int>> {
... 
   void analyze(StreamID id, Event const& event) const { 
     ++(*streamCache(id) ); }
};
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Global Module
One instance of  a module shared by all Streams
One module sees all Runs, LuminosityBlocks and Events

All member functions and member data must be thread-safe
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class Counter : public global::Analyzer<StreamCache<int>> {
... 
   void analyze(StreamID id, Event const& event) const { 
     ++(*streamCache(id) ); }
};
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One Module
One instance of  a module shared by all Streams
One module sees all transitions

Module instance sees only one transition at a time
Framework guarantees the serialization
Member data does not need to be thread-safe

Can use a resource shared across different modules
Modules declare the use of the resource
Framework guarantees only one module using the resource runs at a time
Can call code which uses ‘static’

E.g. legacy FORTRAN based MC event generators

Easy to convert from Legacy to One interface

Good for OutputModules and ntuple making Analyzers
41

class NTupleMaker : public one::Analyzer<> {
... };
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Legacy Module
Modules which have not been ported to new interface
Just need to recompile

Only one legacy module will run at a time
Have to assume the modules can interfere with one another
Performance problem

Eases code migration

42
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Thread Safe Coding
CMS module users that wish to implement fine grain parallelism 
must keep in mind that their own internal data structures and 
algorithms have to be thread safe.

The framework group has identified three patterns that can be 
reused:
Use of C++11 std::atomic to guarantee synchronization between threads.
Thread safe Pointer Caches
Thread safe Value Caches

See the backup slides for how these concepts can be 
implemented.
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Tool Categories
Static code analysis 
Clang

Run time checking 
Helgrind

45
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Static Code Analysis
CMS extended clang static analysis tool
http://clang-analyzer.llvm.org

Types of  Checkers
Problem with const member functions of data products
Finding statics that affect modules

46
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Data Products Checking
Data Products are shared between modules

Only const access is allowed

We check for
Non-const statics
Mutable member data which is not std::atomic<>
Member functions casting away const on member data
Pointer member data being returned from const function
Pointer member data being passed as non-const argument to function

includes calling a non-const member function of the pointed to class

Checks done recursively on all data members which are classes

47
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Modules & Statics
Any non-const static used by a module is shared state

Working on tool which
Finds which functions in system interact with statics
For each function in system, determine which other functions they call
For a given module, see if any functions it calls ultimately reach a static

48
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Helgrind
Tool in Valgrind suite

Searches for data races between threads
Records memory reads/writes done by each thread
Flags if multiple threads use same memory address and one does a write
Ignores cases where posix synchronization mechanism protects memory

mutex, semaphore, pthread_join

Does not understand lock-free designs
Generates lots of false positives

49

 Possible data race during write of size 1 at 0x8D878A0 by thread #7
 Locks held: none
    at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
    ...
    by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)
 
 This conflicts with a previous write of size 1 by thread #2
 Locks held: none
    at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
    ...
    by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)
 
 Address 0x8D878A0 is 144 bytes inside a block of size 152 alloc'd
    at 0x4807A85: operator new(unsigned long) (in vgpreload_helgrind-amd64-linux.so)
    ... 
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Conclusion
CMS is in the process of  moving to a multi-threaded framework

The design allows many different levels of  concurrency
Events, modules and sub-module

Thread-unsafe code is allowed via ‘One’ module variety
Framework guarantees serialization

Need tools to find thread-safety issues

Next CHEP we will have exciting results to report

53



Backup



Thread Safe
Coding Patterns



CMS Threaded Framework CHEP 2013

C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one 
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization

56

Initialization                            Thread 1                   Thread 2
int a=0, b=0;
std::atomic<bool> isSet{false};
 

                              a=2; b=3;              while(not isSet.load()){}; 
                              isSet.store(true);                                    

                                                cout << a <<‘ ‘<< b << endl;

Output           2 3
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C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one 
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization
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Initialization                            Thread 1                   Thread 2
int a=0, b=0;
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                                                cout << a <<‘ ‘<< b << endl;
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Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

61

class Blah {
   ...
   mutable std::atomic<Foo*> m_foo; 
};

const Foo& Blah::foo() const {
   if(nullptr==m_foo.load()) {
      std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

      //see if we should keep our instance
      Foo* expected = nullptr; 
      if(m_foo.compare_exchange_strong(expected, f.get()) ) {
         //m_foo was equal to nullptr and now is equal to f.get()
         f.release();
      }
   }
   return *m_foo;
}
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class Blah {
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class Blah {
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Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner
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class Blah {
   ...
   mutable std::atomic<Foo*> m_foo; 
};

const Foo& Blah::foo() const {
   if(nullptr==m_foo.load()) {
      std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

      //see if we should keep our instance
      Foo* expected = nullptr; 
      if(m_foo.compare_exchange_strong(expected, f.get()) ) {
         //m_foo was equal to nullptr and now is equal to f.get()
         f.release();
      }
   }
   return *m_foo;
}
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Value Caches
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class Blah {
   ...
   mutable Foo m_foo;
   enum FooStates {kUnset, kSetting, kSet};  
   mutable std::atomic<char> m_fooState = kUnset;
}; 

Foo Blah::foo() const {
   if(kSet==m_fooState.load()) return m_foo;

   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
   if(m_fooState.compare_exchange_strong(expected, kSetting) ) {
     //it is our job to set the value
     m_foo.swap(tmp);
     
     //this must be after the swap
     m_fooState.store(kSet);
     return m_foo;
   }
   //another thread beat us to trying to set m_foo
   return tmp;
}
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68

class Blah {
   ...
   mutable Foo m_foo;
   enum FooStates {kUnset, kSetting, kSet};  
   std::atomic<char> m_fooState = kUnset;
}; 

Foo Blah::foo() const {
   if(kSet==m_fooState.load()) return m_foo;

   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
   if(m_fooState.compare_exchange_strong(expected, kSetting) ) {
     //it is our job to set the value
     m_foo.swap(tmp);
     
     //this must be after the swap
     m_fooState.store(kSet);
     return m_foo;
   }
   //another thread beat us to trying to set m_foo
   return tmp;
}



CMS Threaded Framework CHEP 2013

Value Caches

69

class Blah {
   ...
   mutable Foo m_foo;
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}; 

Foo Blah::foo() const {
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   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
   if(m_fooState.compare_exchange_strong(expected, kSetting) ) {
     //it is our job to set the value
     m_foo.swap(tmp);
     
     //this must be after the swap
     m_fooState.store(kSet);
     return m_foo;
   }
   //another thread beat us to trying to set m_foo
   return tmp;
}
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Value Caches
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class Blah {
   ...
   mutable Foo m_foo;
   enum FooStates {kUnset, kSetting, kSet};  
   mutable std::atomic<char> m_fooState = kUnset;
}; 

Foo Blah::foo() const {
   if(kSet==m_fooState.load()) return m_foo;

   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
   if(m_fooState.compare_exchange_strong(expected, kSetting) ) {
     //it is our job to set the value
     m_foo.swap(tmp);
     
     //this must be after the swap
     m_fooState.store(kSet);
     return m_foo;
   }
   //another thread beat us to trying to set m_foo
   return tmp;
}
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Value Caches
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class Blah {
   ...
   mutable Foo m_foo;
   enum FooStates {kUnset, kSetting, kSet};  
   mutable std::atomic<char> m_fooState = kUnset;
}; 

Foo Blah::foo() const {
   if(kSet==m_fooState.load()) return m_foo;

   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
   if(m_fooState.compare_exchange_strong(expected, kSetting) ) {
     //it is our job to set the value
     m_foo.swap(tmp);
     
     //this must be after the swap
     m_fooState.store(kSet);
     return m_foo;
   }
   //another thread beat us to trying to set m_foo
   return tmp;
}
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Value Caches
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class Blah {
   ...
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}; 
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   Foo tmp{...}; //need to make one

   //Try to cache
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Value Caches
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class Blah {
   ...
   mutable Foo m_foo;
   enum FooStates {kUnset, kSetting, kSet};  
   mutable std::atomic<char> m_fooState = kUnset;
}; 

Foo Blah::foo() const {
   if(kSet==m_fooState.load()) return m_foo;

   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
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Value Caches
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class Blah {
   ...
   mutable Foo m_foo;
   enum FooStates {kUnset, kSetting, kSet};  
   mutable std::atomic<char> m_fooState = kUnset;
}; 

Foo Blah::foo() const {
   if(kSet==m_fooState.load()) return m_foo;

   Foo tmp{...}; //need to make one

   //Try to cache
   char expected = kUnset;
   if(m_fooState.compare_exchange_strong(expected, kSetting) ) {
     //it is our job to set the value
     m_foo.swap(tmp);
     
     //this must be after the swap
     m_fooState.store(kSet);
     return m_foo;
   }
   //another thread beat us to trying to set m_foo
   return tmp;
}
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Amdahl’s Law
Speedup of  parallelization is limited by the sequential parts of  a 
program

Can not make good use of  multiple cores till vast majority of  
CMSSW code can run threaded
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Gustafson’s Law
The larger the problem the better it parallelizes
Can solve larger problems in the same amount of 
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