
Elizabeth Sexton-Kennedy
Christopher Jones FNAL
On behalf of CMS Offline

Stitched Together
Transitioning CMS
to a Hierarchical
Threaded Framework

CMS Threaded Framework CHEP 2013

Outline
Goals

Design

Thread Safety

Tools

2

CMS Threaded Framework CHEP 2013

Goals
Better scaling of system resources as core count increases
Puts less burdens on existing grid sites since one batch slot uses more cores
Potential to use sites with lower available resources

More sharing between cores
Share infrequently updated memory

conditions
I/O buffers

Share file handles
Share network connections

Minimize changes to existing framework and user facing
interfaces

3

Design

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

5

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

6

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

7

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

8

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

9

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

10

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

11

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

12

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

13

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

14

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

15

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

16

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

17

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

18

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

19

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

20

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

21

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

22

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

23

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Legacy Design
State Transitions

Event Processing
Algorithms are encapsulated into modules

24

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

CMS Threaded Framework CHEP 2013

Threaded Design
Run multiple transitions, i.e. events, concurrently
Introduces new concepts: Global and Stream

Within one event run multiple modules concurrently
Have to take into account module dependencies
Want to minimize any required changes to module code

Within one module be able to run multiple tasks concurrently

Intel’s Threaded Building Blocks used for all of the above
Break down work into ‘tasks’ and TBB can run the tasks in parallel
http://threadingbuildingblocks.org

25

http://threadingbuildingblocks.org
http://threadingbuildingblocks.org

CMS Threaded Framework CHEP 2013

Concurrent Transitions

Global
Sees transitions on a ‘global’ scale

see begin of Run and begin of Lumi when source first reads them
sees end of Run and end of Lumi once all processing has finished for them

Multiple transitions can be running concurrently
Events are not seen ‘globally’

Stream
Processes transitions serially

begin run, begin lumi, events, end lumi, end run
Multiple streams can be running concurrently each with own events

One stream only sees a subset of the events in a job
Present CMS framework is equivalent to running with only one stream
Paths and EndPaths are a per Stream construct

The same module can be shared across Streams
The Stream knows if a module was run for a particular event

26

Begin
Job

Begin
Stream

Begin
Stream

Global

Stream A

Stream B

Begin
Run

Begin
Lumi

Begin
Run

Begin
Run

Begin
Lumi

Begin
Lumi

Event
1

Event
2

Event
3

End
Lumi

Begin
Lumi

Begin
Lumi

Event
4

End
Lumi

End
Lumi

Begin
Lumi

Begin
Lumi

Event
5

End
Lumi

End
Lumi

Begin
Lumi

Event
6

End
Lumi

End
Lumi

End
Run

End
Run

End
Lumi

End
Run

End
Stream

End
Stream

End
Job

CMS Threaded Framework CHEP 2013

Concurrent Modules

27

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

CMS Threaded Framework CHEP 2013

Concurrent Modules

28

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

CMS Threaded Framework CHEP 2013

Concurrent Modules

29

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

CMS Threaded Framework CHEP 2013

Concurrent Modules

30

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

CMS Threaded Framework CHEP 2013

Concurrent Modules

31

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

CMS Threaded Framework CHEP 2013

Concurrent Modules

32

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

CMS Threaded Framework CHEP 2013

Concurrent Tasks
Can use TBB directly inside a module
TBB will handle scheduling tasks for both modules and sub-modules

TBB has some convenience functions

Can create own tasks for complex algorithms

Users tasks must finish before returning from module

33

std::vector<Results> results(input.size(),Results());
tbb::parallel_for(0U,input.size(), DoWork(results));

class MyTask : public tbb::task { ... };
...
MyTask* mt = new (tbb::task::allocate_root()) MyTask;
tbb::task::spawn_root_and_wait(mt);

CMS Threaded Framework CHEP 2013

Scaling: Infinite Cores

32 core AMD Opteron Processor 6128 w/ 64GB RAM

All modules are calling usleep

TBB stops perfect scaling around 2000 simultaneous events (se)
Is using 1.3 threads/simultaneous event

Single threaded framework hits memory limit at 3000 se

34

0

50.0

100.0

150.0

200.0

250.0

0 1000 2000 3000 4000 5000

Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

Single Threaded
TBB

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Scaled Rate

Ev
en

ts
/S

ec
/S

im
ul

ta
ne

ou
s

Ev
en

t
Number of Simultaneous Events

Single Threaded
TBB

Thread-Safety

CMS Threaded Framework CHEP 2013

Thread Safety
Data Products
Information passed from module to module
Framework only provides ‘const’ access to data products
‘const’ member functions must be thread safe

Matches C++11 thread-safety guarantee for containers

Modules
Majority of user defined code
Different module varieties define different levels of thread safety

Stream
Global
One
Legacy

36

CMS Threaded Framework CHEP 2013

Stream Module
Replicate an instance of a module configuration for each Stream
E.g. if have 8 Streams in a job will have 8 copies of a module

A Stream only processes one Event at a time
A module copy will only be called at most once per event
Member data does not have to be thread safe

One Stream only sees a fraction of the Events in the job
Therefore a module copy only sees a fraction of the events
Not a problem for most Producers and Filters

Easy to convert from Legacy to Stream interface

Most Filters and Producers should be easy to convert

37

class TrackClusterRemover : public stream::Producer<> {
... };

CMS Threaded Framework CHEP 2013

Global Module
One instance of a module shared by all Streams
One module sees all Runs, LuminosityBlocks and Events

All member functions and member data must be thread-safe
Member functions called on each transition are ‘const’
The interface provides ways to help you with thread-safety

per transition caching

Only use if
Need to share as much memory across Streams as possible or
Algorithm must see all Runs, LuminosityBlocks or Events

High performance OutputModules would be Global
38

class Counter : public global::Analyzer<StreamCache<int>> {
...
 void analyze(StreamID id, Event const& event) const {
 ++(*streamCache(id)); }
};

CMS Threaded Framework CHEP 2013

Global Module
One instance of a module shared by all Streams
One module sees all Runs, LuminosityBlocks and Events

All member functions and member data must be thread-safe
Member functions called on each transition are ‘const’
The interface provides ways to help you with thread-safety

per transition caching

Only use if
Need to share as much memory across Streams as possible or
Algorithm must see all Runs, LuminosityBlocks or Events

High performance OutputModules would be Global
39

class Counter : public global::Analyzer<StreamCache<int>> {
...
 void analyze(StreamID id, Event const& event) const {
 ++(*streamCache(id)); }
};

CMS Threaded Framework CHEP 2013

Global Module
One instance of a module shared by all Streams
One module sees all Runs, LuminosityBlocks and Events

All member functions and member data must be thread-safe
Member functions called on each transition are ‘const’
The interface provides ways to help you with thread-safety

per transition caching

Only use if
Need to share as much memory across Streams as possible or
Algorithm must see all Runs, LuminosityBlocks or Events

High performance OutputModules would be Global
40

class Counter : public global::Analyzer<StreamCache<int>> {
...
 void analyze(StreamID id, Event const& event) const {
 ++(*streamCache(id)); }
};

CMS Threaded Framework CHEP 2013

One Module
One instance of a module shared by all Streams
One module sees all transitions

Module instance sees only one transition at a time
Framework guarantees the serialization
Member data does not need to be thread-safe

Can use a resource shared across different modules
Modules declare the use of the resource
Framework guarantees only one module using the resource runs at a time
Can call code which uses ‘static’

E.g. legacy FORTRAN based MC event generators

Easy to convert from Legacy to One interface

Good for OutputModules and ntuple making Analyzers
41

class NTupleMaker : public one::Analyzer<> {
... };

CMS Threaded Framework CHEP 2013

Legacy Module
Modules which have not been ported to new interface
Just need to recompile

Only one legacy module will run at a time
Have to assume the modules can interfere with one another
Performance problem

Eases code migration

42

CMS Threaded Framework CHEP 2013

Thread Safe Coding
CMS module users that wish to implement fine grain parallelism
must keep in mind that their own internal data structures and
algorithms have to be thread safe.

The framework group has identified three patterns that can be
reused:
Use of C++11 std::atomic to guarantee synchronization between threads.
Thread safe Pointer Caches
Thread safe Value Caches

See the backup slides for how these concepts can be
implemented.

43

Tools

CMS Threaded Framework CHEP 2013

Tool Categories
Static code analysis
Clang

Run time checking
Helgrind

45

CMS Threaded Framework CHEP 2013

Static Code Analysis
CMS extended clang static analysis tool
http://clang-analyzer.llvm.org

Types of Checkers
Problem with const member functions of data products
Finding statics that affect modules

46

CMS Threaded Framework CHEP 2013

Data Products Checking
Data Products are shared between modules

Only const access is allowed

We check for
Non-const statics
Mutable member data which is not std::atomic<>
Member functions casting away const on member data
Pointer member data being returned from const function
Pointer member data being passed as non-const argument to function

includes calling a non-const member function of the pointed to class

Checks done recursively on all data members which are classes

47

CMS Threaded Framework CHEP 2013

Modules & Statics
Any non-const static used by a module is shared state

Working on tool which
Finds which functions in system interact with statics
For each function in system, determine which other functions they call
For a given module, see if any functions it calls ultimately reach a static

48

CMS Threaded Framework CHEP 2013

Helgrind
Tool in Valgrind suite

Searches for data races between threads
Records memory reads/writes done by each thread
Flags if multiple threads use same memory address and one does a write
Ignores cases where posix synchronization mechanism protects memory

mutex, semaphore, pthread_join

Does not understand lock-free designs
Generates lots of false positives

49

 Possible data race during write of size 1 at 0x8D878A0 by thread #7
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 This conflicts with a previous write of size 1 by thread #2
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 Address 0x8D878A0 is 144 bytes inside a block of size 152 alloc'd
 at 0x4807A85: operator new(unsigned long) (in vgpreload_helgrind-amd64-linux.so)
 ...

CMS Threaded Framework CHEP 2013

Helgrind
Tool in Valgrind suite

Searches for data races between threads
Records memory reads/writes done by each thread
Flags if multiple threads use same memory address and one does a write
Ignores cases where posix synchronization mechanism protects memory

mutex, semaphore, pthread_join

Does not understand lock-free designs
Generates lots of false positives

50

 Possible data race during write of size 1 at 0x8D878A0 by thread #7
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 This conflicts with a previous write of size 1 by thread #2
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 Address 0x8D878A0 is 144 bytes inside a block of size 152 alloc'd
 at 0x4807A85: operator new(unsigned long) (in vgpreload_helgrind-amd64-linux.so)
 ...

CMS Threaded Framework CHEP 2013

Helgrind
Tool in Valgrind suite

Searches for data races between threads
Records memory reads/writes done by each thread
Flags if multiple threads use same memory address and one does a write
Ignores cases where posix synchronization mechanism protects memory

mutex, semaphore, pthread_join

Does not understand lock-free designs
Generates lots of false positives

51

 Possible data race during write of size 1 at 0x8D878A0 by thread #7
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 This conflicts with a previous write of size 1 by thread #2
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 Address 0x8D878A0 is 144 bytes inside a block of size 152 alloc'd
 at 0x4807A85: operator new(unsigned long) (in vgpreload_helgrind-amd64-linux.so)
 ...

CMS Threaded Framework CHEP 2013

Helgrind
Tool in Valgrind suite

Searches for data races between threads
Records memory reads/writes done by each thread
Flags if multiple threads use same memory address and one does a write
Ignores cases where posix synchronization mechanism protects memory

mutex, semaphore, pthread_join

Does not understand lock-free designs
Generates lots of false positives

52

 Possible data race during write of size 1 at 0x8D878A0 by thread #7
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 This conflicts with a previous write of size 1 by thread #2
 Locks held: none
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)
 ...
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)

 Address 0x8D878A0 is 144 bytes inside a block of size 152 alloc'd
 at 0x4807A85: operator new(unsigned long) (in vgpreload_helgrind-amd64-linux.so)
 ...

CMS Threaded Framework CHEP 2013

Conclusion
CMS is in the process of moving to a multi-threaded framework

The design allows many different levels of concurrency
Events, modules and sub-module

Thread-unsafe code is allowed via ‘One’ module variety
Framework guarantees serialization

Need tools to find thread-safety issues

Next CHEP we will have exciting results to report

53

Backup

Thread Safe
Coding Patterns

CMS Threaded Framework CHEP 2013

C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization

56

Initialization Thread 1 Thread 2
int a=0, b=0;
std::atomic<bool> isSet{false};

 a=2; b=3; while(not isSet.load()){};
 isSet.store(true);

 cout << a <<‘ ‘<< b << endl;

Output 2 3

CMS Threaded Framework CHEP 2013

C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization

57

Initialization Thread 1 Thread 2
int a=0, b=0;
std::atomic<bool> isSet{false};

 a=2; b=3; while(not isSet.load()){};
 isSet.store(true);

 cout << a <<‘ ‘<< b << endl;

Output 2 3

CMS Threaded Framework CHEP 2013

C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization

58

Initialization Thread 1 Thread 2
int a=0, b=0;
std::atomic<bool> isSet{false};

 a=2; b=3; while(not isSet.load()){};
 isSet.store(true);

 cout << a <<‘ ‘<< b << endl;

Output 2 3

CMS Threaded Framework CHEP 2013

C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization

59

Initialization Thread 1 Thread 2
int a=0, b=0;
std::atomic<bool> isSet{false};

 a=2; b=3; while(not isSet.load()){};
 isSet.store(true);

 cout << a <<‘ ‘<< b << endl;

Output 2 3

CMS Threaded Framework CHEP 2013

C++11 std::atomic
C++11 defines a threading memory model
Access to the same memory location by multiple threads involving at least one
write is not defined unless explicitly synchronized

std::atomic<> defines an explicit synchronization

60

Initialization Thread 1 Thread 2
int a=0, b=0;
std::atomic<bool> isSet{false};

 a=2; b=3; while(not isSet.load()){};
 isSet.store(true);

 cout << a <<‘ ‘<< b << endl;

Output 2 3

CMS Threaded Framework CHEP 2013

Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

61

class Blah {
 ...
 mutable std::atomic<Foo*> m_foo;
};

const Foo& Blah::foo() const {
 if(nullptr==m_foo.load()) {
 std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

 //see if we should keep our instance
 Foo* expected = nullptr;
 if(m_foo.compare_exchange_strong(expected, f.get())) {
 //m_foo was equal to nullptr and now is equal to f.get()
 f.release();
 }
 }
 return *m_foo;
}

CMS Threaded Framework CHEP 2013

Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

62

class Blah {
 ...
 mutable std::atomic<Foo*> m_foo;
};

const Foo& Blah::foo() const {
 if(nullptr==m_foo.load()) {
 std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

 //see if we should keep our instance
 Foo* expected = nullptr;
 if(m_foo.compare_exchange_strong(expected, f.get())) {
 //m_foo was equal to nullptr and now is equal to f.get()
 f.release();
 }
 }
 return *m_foo;
}

CMS Threaded Framework CHEP 2013

Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

63

class Blah {
 ...
 mutable std::atomic<Foo*> m_foo;
};

const Foo& Blah::foo() const {
 if(nullptr==m_foo.load()) {
 std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

 //see if we should keep our instance
 Foo* expected = nullptr;
 if(m_foo.compare_exchange_strong(expected, f.get())) {
 //m_foo was equal to nullptr and now is equal to f.get()
 f.release();
 }
 }
 return *m_foo;
}

CMS Threaded Framework CHEP 2013

Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

64

class Blah {
 ...
 mutable std::atomic<Foo*> m_foo;
};

const Foo& Blah::foo() const {
 if(nullptr==m_foo.load()) {
 std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

 //see if we should keep our instance
 Foo* expected = nullptr;
 if(m_foo.compare_exchange_strong(expected, f.get())) {
 //m_foo was equal to nullptr and now is equal to f.get()
 f.release();
 }
 }
 return *m_foo;
}

CMS Threaded Framework CHEP 2013

Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

65

class Blah {
 ...
 mutable std::atomic<Foo*> m_foo;
};

const Foo& Blah::foo() const {
 if(nullptr==m_foo.load()) {
 std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

 //see if we should keep our instance
 Foo* expected = nullptr;
 if(m_foo.compare_exchange_strong(expected, f.get())) {
 //m_foo was equal to nullptr and now is equal to f.get()
 f.release();
 }
 }
 return *m_foo;
}

CMS Threaded Framework CHEP 2013

Pointer Caches
Caching is often used in const member functions
Cache needs to be updated in a thread safe manner

66

class Blah {
 ...
 mutable std::atomic<Foo*> m_foo;
};

const Foo& Blah::foo() const {
 if(nullptr==m_foo.load()) {
 std::unique_ptr<Foo> f{ new Foo(...) }; //make value to cache

 //see if we should keep our instance
 Foo* expected = nullptr;
 if(m_foo.compare_exchange_strong(expected, f.get())) {
 //m_foo was equal to nullptr and now is equal to f.get()
 f.release();
 }
 }
 return *m_foo;
}

CMS Threaded Framework CHEP 2013

Value Caches

67

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

68

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

69

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

70

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

71

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

72

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

73

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Value Caches

74

class Blah {
 ...
 mutable Foo m_foo;
 enum FooStates {kUnset, kSetting, kSet};
 mutable std::atomic<char> m_fooState = kUnset;
};

Foo Blah::foo() const {
 if(kSet==m_fooState.load()) return m_foo;

 Foo tmp{...}; //need to make one

 //Try to cache
 char expected = kUnset;
 if(m_fooState.compare_exchange_strong(expected, kSetting)) {
 //it is our job to set the value
 m_foo.swap(tmp);

 //this must be after the swap
 m_fooState.store(kSet);
 return m_foo;
 }
 //another thread beat us to trying to set m_foo
 return tmp;
}

CMS Threaded Framework CHEP 2013

Amdahl’s Law
Speedup of parallelization is limited by the sequential parts of a
program

Can not make good use of multiple cores till vast majority of
CMSSW code can run threaded

75

0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

Utilization of Cores

Av
er

ag
e

U
til

iza
tio

n
of

 C
or

es

Number of Cores

80% 90%
95% 98%
99%

Parallel
Fraction

4 Cores 8 Cores

0.8

0.9

0.95

0.984

0.992

0.63 0.42

0.77 0.59

0.87 0.74

0.95 0.90

0.98 0.95

CMS Threaded Framework CHEP 2013

Gustafson’s Law
The larger the problem the better it parallelizes
Can solve larger problems in the same amount of

76

0

2

4

6

8

0 2 4 6 8

Number of Cores Needed to Solve Bigger Problem
C

om
pl

ex
ity

Cores

80% 90%
95% 98%
99%

