
Future  Directions    
For  Software  Tools  	

Philippe Canal, Fermilab 



Outline	

•  Hardware evolution 
•  Software implications 
•  Review of (some) current (and past) efforts 
•  Common Libraries  

o  ROOT, Geant4 

•  Conclusions 

2 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Game  Changer	

3 10/14/13 CHEP2013 - Philippe Canal - FNAL 

Clock Speed plateaued but MIPS continue to increase. 



Cores  Capabilities	
•  Unicore 

o  Free lunch, same exe just run faster on new hardware 

•  Multi-core (2005-) ; Many-core (2012-) 
o  Must write parallel code ; must write very parallel code. 
o  Or memory available must scale with number of cores. 

•  Heterogeneous cores (2009-) 
o  Must write heterogeneous and locally  

distributed parallel code 

•  Elastic compute cloud cores (2010-). 

4 

Herb Sutter, 2012 

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Memory  Architectures	
•  Incoherent and weak 

memory 
o  Examples: PowerPC, ARM 
o  Concerns: explicit 

synchronization 

•  Disjoint but tightly coupled 
o  Examples: older GPGPU 
o  Concerns: copying 

•  Disjoint and loosely coupled 
o  Examples: Grids, Clouds 
o  Concerns: reliability (of 

nodes) and latency 

5 

•  Unified Memory 
o  Concerns: locality, access 

order 

•  Non Uniform Memory 
Access cache 
o  Concerns: locality, layout 

•  NUMA RAM 
o  Examples: bladed servers, 

SMP desktop, newer GPGPU 
o  Concerns: copying over 

slower links 

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Charting  The  Landscape	

6 10/14/13 CHEP2013 - Philippe Canal - FNAL 

Herb Sutter, 2012 



Filling  The  Landscape	

7 10/14/13 CHEP2013 - Philippe Canal - FNAL 

Herb Sutter, 2012 



Filling  The  Landscape	

8 

Our  Bread  
&  BuCer  
For  last  30  

years  	

10/14/13 CHEP2013 - Philippe Canal - FNAL 

Herb Sutter, 2012 



Filling  The  Landscape	

9 

Upcoming  
Playground	

10/14/13 CHEP2013 - Philippe Canal - FNAL 

Herb Sutter, 2012 



Disk  Trends	
•  Area density and throughput  

somewhat plateauing 
•  Latencies decreasing 
•  SSD mainstream, added to 

multi-tier storage solution 

10 10/14/13 CHEP2013 - Philippe Canal - FNAL 

Jean-Jacques Maleval, 2011 



Disk  Hierarchy	
•  Similar to CPU/Memory hierarchy 
•  From SSD, HDD to  

Globally Distributed Data Server  
and everything in between. 

•  Same large range of issues 
o  Latency 
o  Copying 
o  Reliability/Availability 

11 10/14/13 CHEP2013 - Philippe Canal - FNAL 



What  It  Means  For  
Software  Dvpt	

•  Code/Libraries will need to become aware of, if not 
made for using 
o  heterogeneous cores/memory/disk 
o  and non-local cores/memory/disk 

•  Efficiency and performance optimization will become 
even more important and more complicated 
o  Layer of latency, bandwidth 
o  High variability of capability of cores 
o  Eventual plateauing when Moore’s Law ends 

•  Might spell the end of compile-once-run-everywhere 
o  As heterogeneity increase the need for just-in-time 

recompilation will increase 

12 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Heterogeneous  
Programming	

•  Currently requires special handling 
o  #pragma (OpenACC, OpenMP, MPI, etc.) 
o  Libraries, Toolkits, scripts (TBB, MKL, ArBB, Vc, VDT, etc.) 
o  ‘Special’ Language (Cuda, OpenCL, Cilk, etc.) 

•  Future versions of mainstream languages will adapt 
(or become marginalized). 
o  For example C++11 (finally!) standardized thread behavior 
o  PyCuda, mpi4py, etc. 
o  Rootbeer, Java run-time compiler for GPU 

•  New languages designed with concurrency at their 
core 
o  Go, Erlang 
o  Becoming more popular 
o  But we have large body of existing code 

13 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Level  Of  Parallelism	
•  Macro 

o  Multi-sites 
•  Currently using Grid and Clouds often driven by experiment controlled 

layer 

o  Multi-node 
o  Multi-socket 
o  Multi-core 

•  Most often also using Grids/Clouds, OpenMP, MPI 
•  Existing solution limited by decrease in memory per core 

•  Micro 
o  Hardware threading, Instruction Level Parallelism (ILP) 

•  On some platforms (GPU for examples), threads need to perform similar 
operations on different data for maximum throughput 

o  Instruction Pipelining 
o  Vectors Processing Units 

14 10/14/13 CHEP2013 - Philippe Canal - FNAL 



HEP/NPP  &  Micro  
Parallelism	

•  Our code underutilize (even current) 
hardware 

15 

SFT       S o F T w a r e   D e v e l o p m e n t   f o r   E x p e r i m e n t s

The Eight dimensions

4

! The “dimensions of performance”
" Vectors 
" Instruction Pipelining 
" Instruction Level Parallelism (ILP) 
" Hardware threading 
" Clock frequency 
" Multi-core 
" Multi-socket 
" Multi-node

Possibly running different
jobs as we do now is the
best solution

}
Gain in memory footprint 
and time-to-solution
but not in throughput

Very little gain to be 
expected and no action 
to be taken

Micro-parallelism: gain 
in throughput and 
in time-to-solution

Expected(limits(on(performance(scalingExpected(limits(on(performance(scalingExpected(limits(on(performance(scalingExpected(limits(on(performance(scaling
SIMD ILP HW(THREADS

MAX 8 4 1.35
INDUSTRY 6 1.57 1.25
HEP 1 0.8 1.25

Expected(limits(on(performance(scaling((mulNplied)Expected(limits(on(performance(scaling((mulNplied)Expected(limits(on(performance(scaling((mulNplied)Expected(limits(on(performance(scaling((mulNplied)
SIMD ILP HW(THREADS

MAX 8 32 43.2
INDUSTRY 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12

10/14/13 CHEP2013 - Philippe Canal - FNAL 

OpenLab, Chep 2012 



What  Can  Limit  Micro  
Parallelism?	

•  No intrinsic vector access pattern 
o  Most high level algorithm/infrastructure push one event/tracks/unit of work 

at unit. 

o  Individual low-level algorithms do not take significant amount of time 
(very few exceptions) 

•  So vectorizing only those helps only marginally  
•  For example for standalone a CMS Geant4 simulation no individual 

routines takes more than a few percent of the run-time 

16 10/14/13 CHEP2013 - Philippe Canal - FNAL 



What  Can  Limit  Micro  
Parallelism?	

•  Too many conditional branches and virtual 
functions 
o  In core ROOT I/O replacing switch statement and reducing ifs statement 

improved performance by 25% 
o  In NVidia GPU, threads within a warp must stay in sync to be executed at 

the same time (on the same mini-core).   Divergence due to ifs statement 
lead to essentially serializing those threads. 

17 10/14/13 CHEP2013 - Philippe Canal - FNAL 



What  Can  Limit  Micro  
Parallelism?	

•  Data dependencies between different iterations of 
a loop 

•  Memory bandwidth limitation (lack of caching) 
•  Indirect addressing 
•  If and switch statements,  

early loop termination 
•  Outer loop with outline  

function calls 

18 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Transitions  BoClenecks	
•  Many potential serial points 

o  End of Event 
o  End of Luminosity 
o  End of Run 
o  Etc. 

•  Delaying is okay but 
o  Memory constraint 

•  Removing is ‘better’ but much ‘harder’! 
o  Some quantity must intrinsically be accumulated/calculated at each 

transition 

19 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Tails	

20 

A  killer  if  one  has  to  wait  the  
end  of  col(i)  before  processing  

col(i+1)	
Average  number  of  
objects  in  memory	

CHEP2013 - Philippe Canal - FNAL 

Rene Brun, 2013 

10/14/13 



A  beCer  solution	

21 

Pipeline  of  
objects	

Checkpoint	
Synchronization.	

Only  1  «  gap  »  every  N  events	

This  type  of  
solution  
required  

anyhow  for  
pile-‐‑up  
studies	

10/14/13 CHEP2013 - Philippe Canal - FNAL 

Rene Brun, 2013 



The  I/O  Trap	
•  We read/write large amount of data 
•  Many opportunities to become a  

bottleneck 
o  Threads writing in single TTrees. 
o  Processes writing to single local disk 
o  Experiment Data Management copying  

files from execution node to data server 
o  Merging files to avoid having too many files 

•  In addition, the number of disks and spindles is not 
increasing as fast as processing power 
o  Hidden serialization for example when using whole node 

allocation and fork on write 

 
22 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Final File!
Typical  Arrangement	

10/14/13 CHEP2013 - Philippe Canal - FNAL 23 

 !

Client	
	

Client	
	

Client	
	

Server	
	



With  Parallel  Merging	

24 

Client	
	

Client	
	

Client	
	

Server	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



With  Parallel  Merging	

25 

Client	
	

Client	
	

Client	
	

Server	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



With  Parallel  Merging	

26 

Final File!

Client	
	

Client	
	

Client	
	

Server	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



With  Parallel  Merging	

27 

Final File!

Client	
	

Client	
	

Client	
	

Server	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



With  Parallel  Merging	

28 

Final File!

Client	
	

Client	
	

Client	
	

Server	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



With  Parallel  Merging	

29 

Final File!

Client	
	

Client	
	

Client	
	

Server	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Cost  Of  Precision	
•  Is precision (double) 

always justified? 
o  Inputs sometimes not as accurate 
o  Difficult to predict or track the final 

accuracy 
o  Not trivial to know the final 

accuracy requirement. 

•  Potential Gains of  
factor 2-3  

10/14/13 CHEP2013 - Philippe Canal - FNAL 30 

•  Precision is expensive 
o  Higher precision requires more 

memory 

o  SIMD vectors with less elements 
o  Polynomial approximation take 

longer 



GPU  Floating-‐‑point  
Consideration	

•  Cost for double-precision 
o  memory throughput (x2) 
o  possible registers spilling 
o  cycles for arithmetic instructions 

(x2/x3 in M2090/K20) 

o  performance in classical RK4:            
float/double = 2.24 (M2090) 

o  not negotiable for precision and 
accuracy 

•  Possibilities for single-
precision 
o  input physics tables 
o  B-field map (texture) 

o  local coordination 

31 10/14/13 CHEP2013 - Philippe Canal - FNAL 
FNAL Detector Simulation GPU Prototype, 2013 



HEP/NPP  &  HPC  	
•  We have skipped several trains  

o  Vectorisation (IBM VM, Cray X-MP, CRAY/YMP, CYBER205,ETA10) 
•  Tried for dectector simulation but not successful enough to justify the 

extra development cost. 

o  Low parallelism (IBM VM, Cray X-MP)  
o  Moderate parallelism (GPMIMD machine)  
o  High parallelism (IBM SP2)  
o  Heterogeneous parallelism  

•  Trivial (job-level) parallelism and evolution of clock cycle has 
been enough  

•  But now the incremental bangs-per-bucks for us is a 
monotonic decreasing function and this will affects also 
throughput  

•  Time to bite the bullet  

32 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Systems  in  1980	

33 

OS & fortran 

Libraries 
HBOOK, Naglib, cernlib 

Experiment 
Software 

End user 
Analysis software 

CDC, IBM 

1000 KLOC 

500 KLOC 

100 KLOC 

10 KLOC 

Vax780 

Tapes	
	
	
	

RAM	
1  MB	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Systems  today	

34 

OS & compilers 

Frameworks like 
ROOT, Geant4 

Experiment 
Software 

End user 
Analysis software 

Hardware 

20 MLOC 

5 MLOC 

4 MLOC 

0.1 MLOC 

Hardware Hardware 
Hardware Clusters of multi-core machines 

10000x8 

GRIDS	

CLOUD
S	

Networks	
10  Gbit/s	

Disks	
1o  PB	

RAM	
2/4  GB  
per  core	

Tapes	
	
	
	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Systems  in  2030  ?	

35 

OS & compilers 

Frameworks like 
ROOT, Geant 

Experiment 
Software 

End user 
Analysis software 

Hardware 

100 MLOC 

20 MLOC 

50 MLOC 

1 MLOC 

Hardware Hardware Hardware Multi-level parallel machines 
10000x1000x1000 

GRIDS	

Clouds	
Of  

Clouds	

Networks	
100  Gbit/s	

Disks	
1o00  PB	

Networks	
100  Gbit/s	Networks	
10  Tbit/s	

RAM	
10  TB	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Distributed  Computing		

•  GRIDS 
o  OSG, WLCG 
o  CRAB, GANGA, DIRAC 
o  Focus (mainly) on one core / one process 
o  Deal with resource allocation and WAN data placement 

•  CLOUDS 
o  FutureGrid (multi-cloud project), Public Clouds (Amazon, etc.), Private 

and Institutional Clouds, etc. 
o  Extra flexibility for provisioning (EaaS, Environment as a Service) 

10/14/13 CHEP2013 - Philippe Canal - FNAL 36 



Distributed  Computing  
Evolving		

•  Many existing and varied solutions, including for example: 

•  ClaRA @ Jefferson lab 
o  Implementation of the SOA  
o  Data processing major components as services with multilingual support 
o  Physics application design/composition based on services 
o  Supports both traditional and cloud computing models 
o  Multi-Threaded 
o  Communicate data through shared memory and /or pub-sub messaging system 
 

•  FairRoot design for distributed processes 
o  Highly flexible:  different data paths should be modeled.  
o  Adaptive:  Sub-systems are continuously under development and improvement 
o  Should works for simulated and real data 
o  It should support all possible hardware where the algorithms could run (CPU, GPU, 

FPGA) 
o  It has to scale to any size! With minimum or ideally no effort. 

37 10/14/13 CHEP2013 - Philippe Canal - FNAL 



22th  May 2012 
Stefano Spataro 

Event Reconstruction in 
the PandaRoot framework 

Postgresql 

Root files 

MySQL 

Oracle 

Run Manager 

Event  
Generator 

Magnetic  
Field Detector base 

IO Manager  

Tasks 

RTDataBase 

Root	  files	  
	  Hits,	  	  
Digits,	  	  
Tracks	  

Application Cuts,  
processes 

Event  
Display  

Track 
propagation 

TSQLServer 

Virtual MC 
Geant3 

Geant4 G4VMC 

G3VMC 
Geometry 

STT 

MUO 

TOF 

GEM 

EMC 

MVD 
DIRC 
FTS 

ASCII 
EvtGen 

DPM 

Pythia 
Track 
finding 

digitizers 

Hit 
 Producers Dipole Map 

Solenoid 
Map 

const. 
field 

Panda  Code  	

Code Design 

FairRoot 

PandaRoot CbmRoot 
R3BRoot 
MPDRoot (NICA) 
ASYEOSRoot 
EICRoot 

M.Al-Turany, 
D.Bertini, 
F.Uhlig, 
R.Karabowicz 



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

        ZeroMQ	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Root  (Event  loop)  	
	
	
	
	
	

39 

FairRootManager	
	
	

FairRunAna	
	
	

FairTasks	
	
Init()	

Re-‐‑Init()	
Exec()	
Finish()	
	
	

FairMQProcessorTask	
	
	
Init()	

Re-‐‑Init()	
Exec()	
Finish()	
	
	
	

ROOT  Files,  Lmd  Files,  Remote  event  server,  …	

FairROOT  -‐‑  Integrating  the  existing  software:  	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



ClaRA  Design  Architecture	

40 

PDP  Service  Bus  (pub-‐‑sub  and/or  shared-‐‑memory)  	

  	
Service  layer	

Orchestration  Layer	

• Rule  invocation	
• Identification	
• Filtration	

Control  Layer    	
• Data  flow  control	
• Load  balancing	
• Error  recovery	
• Managing  errors  and  exceptions	
• Security,  validation  and  auditing	

Administration  
SaaS,  IaaS,  DaaS	

Registration	
Service	

Service Inventory 

10/14/13 CHEP2013 - Philippe Canal - FNAL 

V. Gyurjyan S. Mancilla 
Jefferson Lab 



ClaRA - Service Communication 

Transient  Data  Storage	

Transient  Data  Storage	

Service  Bus	

Service  1	 Service  2	 Service  N	

Service  1	 Service  2	 Service  N	

Java  DPE	

C++  DPE	

Computing  Node  1	

Service  Bus	

Computing  Node  2	

Service  Bus	

Computing  Node  1	

Service  Bus	

Computing  Node  N	

41 10/14/13 CHEP2013 - Philippe Canal - FNAL 



LHC  On-‐‑going  Efforts	
•  TBB Frameworks 

o  CMSSW, ART 

•  White boards 
o  ATLAS, LHCb, i.e. Gaudi, also use TBB 

•  Port to ARM, Intel MIC / Xeon Phi 

42 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Concurrent  Gaudi  
Component  Overview	

43 10/14/13 CHEP2013 - Philippe Canal - FNAL 



CMSSW  Concurrent  Modules	

Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

EndPaths

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done

44 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Algorithm  Parallelism	
•  Many Efforts 

o  CMS Vertex Clustering 
o  Triplet Seeding in CMS 
o  Real-time use of GPUs in NA62 Experiment 
o  LHCb Pixel tracking using GPU 
o  TBB in ATLAS Liquid Argon Calibration 
o  Tracking with Cellular Automata in CMS, Alice, CBM, STAR 

o  CBM MUCH Trigger in CUDA 
o  Cluster Transformation in Alice HLT 
o  STAR High Level Tracking Trigger 
o  Track Finding in the Silicon Vertex Detector of Belle 2 
o  KFParticle Package for Vertexing and Particle Finding 
o  Etc., etc. 

45 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Vectorization  Efforts	
•  Auto-vectorization 

o  Manual re-code work is needed to help the compiler (think-C) 
o  Factor ~2 in specific algorithms has been reported (CMS, ATLAS) 

•  Vector libraries 
o  Linear algebra libraries (e.g. Eigen 3) 
o  Vector data types – many objects in parallel (e.g. VC) 
o  Transcendental functions (e.g. VDT speedup 2x-3x)  
o  In general small effort required to introduce these libraries  

•  Intrinsics 
o  Code at hardware level (code maintenance is an issue) 

•  Language extensions 
o  Cilk++ (not explored so far) 

46 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Current  Trends	
•  Recurrent thread 

o  Use of TBB in particular and task based system in general for ‘higher’ level 
application 

•  Framework effort current concentrate on task level 
concurrency but each module treats only one 
event at a time. 
o  Vectorization limited to a few (significant) modules/algorithms 
o  Allows evolution rather than revolution 
o  But still overall underutilization of (vector) hardware. 

47 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Current  Trends	
•  Simplifying the end developers’ life. 

o  They should not (usually) have to worry about locks and race conditions. 
o  Need to come up with simple rules to follow 

•  avoid concurrent data access in ‘their’ part of the code 

•  However need to get  
them started to design  
for vector/parallelism 

48 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Need  For  Coordination	
•  Many efforts to parallelize both Low Level 

Algorithms and experiment frameworks 

•  Both will try to use all computing resources 

•  Need run-time Coordination to avoid risk of over-
subscription and mutual negative effect on cache/
memory coherency 

•  Effort is very significant but our resources are 
diminishing, coordination and sharing of code is 
becoming more important 

49 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Sharing  Progress	
•  Developers Gatherings 

o  Concurrency Forum 
o  Workshop For Future Challenges in Tracking and Trigger Concepts 
o  Not quite yet at the level of common/shared  developments 

•  A few exceptions like the Vector Class library. 
o  Not yet fully engaging similar effort outside HEP/NPP 

•  DOE’s Advanced Scientific Computing Research 
•  Software Sustainability Institute at University of Edinburgh 
•  etc. 

•  Existing de-facto HEP/NPP standards 
o  Eg. Geant4, ROOT 
o  Improvements (and bottlenecks) have magnified effects 

•  Including as a code copy/paste source. 
o  Must lead by example 

•  But backward compatibility constraints/challenges 

50 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Geant4  Version  10	
•  Event level parallelism 
•  Designed to minimize changes in user-code 

o  Maintain API changes at minimum 

•  Focusing on “lock-free” code 
o  linearity of speed-up (w.r.t. #threads) is the metric they are currently 

concentrating on (then we’ll optimize absolute throughput) 
o  Good results obtained for both metrics anyway 

•  Enforce use of POSIX standards to allow for integration 
with user preferred parallelization frameworks (e.g. 
MPI,TBB, ...) 

•  Basic Design Choice 
o  Thread-safety implemented via Thread Local Storage 
o  “Split-class” mechanism: reduce memory consumption  

•  Read-only part of most memory consuming objects shared between 
thread 

•  Geometry, PhysicsTables 
•  Rest is thread-private  

51 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Geant4  Version  10	

24 

Geometry and 
Physics 

configuration 

0 1 2 3 4 N 

Per-thread 
Init 

Per-thread 
Init 

Per-thread 
Init 

5 … 

Event 
Loop 

Event 
Loop 

Event 
Loop 

End Local 
Run 

End Local 
Run 

End Local 
Run 

Merge in Global  Run 

Per-event seeds pre-
prepared in  a “queue” 

Threads compete for next 
event to be processes (new 
in ref-08) 

Command line scoring and 
G4tools automatically merge 
results from threads 

52 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Simulation  Vector  
Prototype	

•  Strategy 
o  Explore from a performance perspective, no constraints from existing 

code  

o  Expose the parallelism at all levels, from coarse granularity to micro-
parallelism at the algorithm level  

o  Integrate from the beginning slow and fast simulation in order to optimize 
both in the same framework  

o  Explore if-and-how existing physics code can be optimized in this 
framework  

o  Improvements (in geometry for instance) and techniques are expected to 
feed back into reconstruction 

o  Explore executing on coprocessors (GPU, Intel MIC) 

53 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Simulation  Vector  
Prototype	

54 10/14/13 CHEP2013 - Philippe Canal - FNAL 



ROOT  &  Concurrency	
•  Proof, POD, xrootd 

o  Exploiting core level parallelism and Grid/Clouds 
o  Process level parallelism 
o  Deal with on node/site level data locality. 

•  Concurrency and vectorization in math 
o  Introduction of the Vc (Vector Class) library 
o  Uses Vc in vector and matrix library 
o  Vectorization of Fitting (using Vc and/or VDT libraries) 
o  Exploring OpenMP / Intel TBB for multi-threads for fitting and numerical 

integration 

•  Concurrent geometry navigation 
o  Adding multi-threading and vectorization in concert with Simulation 

Vector Prototype 

55 10/14/13 CHEP2013 - Philippe Canal - FNAL 



ROOT  6  &  Concurrency	
•  Core of ROOT based on Interpreter 
•  CINT was inherently thread adverse 

o  database and execution were intermingled for performance reasons. 

•  ROOT 6 introduces Cling  
o  Based on LLVM and Clang. 

o  Cling has clear separation of database engine and execution engine 
allowing to lock them independently 

o  Enables support for sturdy multi-thread I/O 

•  Documentation effort to express thread-safe (by 
correctly marking them as const methods) 

•  Proper Just-In-Time compiler opens up a large set of 
run-time optimization 

56 10/14/13 CHEP2013 - Philippe Canal - FNAL 



ROOT  I/O  &  Concurrency	
•  Parallel File Merging 

o  Address end-of-job tail 

•  TTreeCache, Asynchronous prefetching 
o  Address local and remote I/O latencies 

•  Support for cloud storage 
o  HDFS, Amazon S3, CloudFront, Google Storage 

•  I/O internal engine and data  
structures 
o  Ready to be easily extended to support  

data bunching 
o  Can also use JIT to optimize hot-spot 

57 10/14/13 CHEP2013 - Philippe Canal - FNAL 

Fusion-io ioDrive2 
1.5 GB/s 
242K 4K-IOPS 
68µs latency 



Meanwhile	
•  In the meantime, progress in ROOT and Geant4 

needs to continue on other fronts 
•  New and improved features, physics processes, 

math and statistics  
algorithms and  
presentations 

•  Display on new form  
factor and OS 

•  Program of works for  
both is long and healthy 

58 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Needs  Vectorization  From  
Start  to  Finish	

•  We have been addressing islands 
o  Low level algorithm 
o  Framework 
o  Large Libraries (Simulation) 

•  Islands are growing but will misconnect without 
coordination 
o  Mismatch between simulation GPU prototype and vector prototype in 

term of granularity and data layout 
o  A single large algorithm can kill overall performance of a multi-thread 

framework but taking over all core and swapping out of the carefully 
plan/located module 

o  Let’s not forget tail handling and Amdahl’s law … 

59 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Classic  Frameworks	

10/14/13 CHEP2013 - Philippe Canal - FNAL 60 

Module	
	
	Local  

Algo	
Common  
Libraries	

Module	
	
	Local  

Algo	
Common  
Libraries	

Module	
	
	Local  

Algo	
Common  
Libraries	

Module	
	
	Local  

Algo	
Common  
Libraries	



Parallel  Frameworks	

10/14/13 CHEP2013 - Philippe Canal - FNAL 61 



Parallel/Vector  Frameworks	

10/14/13 CHEP2013 - Philippe Canal - FNAL 62 

Final File!
 !



Lack  Of  Coordinations	

10/14/13 CHEP2013 - Philippe Canal - FNAL 63 

Final File!
 !



Parallel/Vector  Frameworks	

10/14/13 CHEP2013 - Philippe Canal - FNAL 64 

Final File!
 !



Conclusions	
•  A software (r)evolution has (finally) started  

•  Need to invest significantly in common software 
tools and common solutions 

•  Need new design and coding paradigm 
o  Design *for* parallelism and vectorization 

65 10/14/13 CHEP2013 - Philippe Canal - FNAL 

“We  stand  today  on  the  edge  of  a  new  frontier  
–  the  frontier  of  the  1960'ʹs  -‐‑  a  frontier  of  

unknown  opportunities  and  perils  -‐‑  a  frontier  
of  unfulfilled  hopes  and  threats.”    

John  F.  Kennedy	



Backup  slides	

66 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Scales	

67 10/14/13 CHEP2013 - Philippe Canal - FNAL 

Herb Sutter, 2012 



Data  Structures  &  parallelism	

68 

event	event	

vertices	

tracks	

C++  pointers	
specific  to  a  process	

Copying  the  structure  
implies  a  relocation  of  

all  pointers	

I/O  is  a  
nightmare	

Update  of  the  structure  from  a  different  
thread  implies  a  lock/mutex	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Data  Structures  &  Locality	

69 

sparse  data  structures  defeat  the  
system  memory  caches	

Group  object  elements/
collections  such  that  the  storage  
matches  the  traversal  processes	

For  example:  group  the  
cross-‐‑sections  for  all  
processes  per  material  

instead  of  all  materials  per  
process	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Parallelism:  key  points	

70 

Minimize  the  sequential/synchronization  parts  (Amdhal  law):  Very  
difficult	

Run  the  same  code  (processes)  on  all  cores  to  optimize  the  memory  
use  (code  and  read-‐‑only  data  sharing)	

Job-‐‑level  is  beCer  than  event-‐‑level  parallelism  for  offline  
systems.	

Use  the  good-‐‑old  principle  of  data  locality  to  minimize  the  cache  misses.	

Exploit  the  vector  capabilities  but  be  careful  with  the  new/delete/
gather/scaCer  problem	

Reorganize  your  code  to  reduce  tails	

10/14/13 CHEP2013 - Philippe Canal - FNAL 



Language  and  Tools	
•  C++11 threads 
•  Intel TBB (Thread Building Block) 
•  ArBB (Array Building Blocks)  
•  Intel Cilk++ 
•  OpenCL (Open Computing Language) 
•  OpenACC (Directive for Accelerators) 
•  NVIDIA CUDA (Compute Unified Device 

Architecture) 
•  Vector classes (Vc) 
•  VDT (Vectorized Mathematical Library) 

71 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Analysis  And  
Vectorization?	

•  The levels of analysis 
o  TTree::Draw, implemented as TSelector using TTreeFormula 
o  Single Core TSelector 
o  Multi Core TSelector via ProofLite 
o  Multi Node TSelector via Proof 
o  Multi Site TSelector via POD 
o  TSelector often substituted by experiment frameworks. 

•  Currently based on the one-event at time paradigm 
o  Vectorization only available in user code for ‘complex’ inner event 

analysis 
o  But most often each event are independent  

•  Significant performance gain plausible by 
introducing vectorization through the data flow but 
o  Often unzipping bound (followed by unboxing, the I/O) 
o  Will require significant library and some user code changes. 

72 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Other  Disk  Trends	
•  To boost performance, many customers are using flash 

memory within servers, as well as solid-state drives in 
storage arrays, to cache speed-sensitive data before 
writing it to slower, but less expensive and higher-
capacity hard drives. 

•  This new platform, he says, is not only an "order of 
magnitude faster" than its older storage but delivers high 
performance, availability and disaster recovery without 
the need for extensive management. The performance 
gain achieved by writing data to six storage nodes 
without transferring it over the network means storing 
multiple copies of the same data. However, says 
Piesche, the low price of commodity disk and servers 
make the trade-off worthwhile. 

73 10/14/13 CHEP2013 - Philippe Canal - FNAL 



Amdahl’s  Law	

74 10/14/13 CHEP2013 - Philippe Canal - FNAL 


