Advanced Networking for HEP, Research and Education in the LHC Era

Harvey B Newman
California Institute of Technology

CHEP2013, Amsterdam
October 17, 2013
Discovery of a Higgs Like Boson
July 4, 2012

Physicists Find Elusive Particle Seen as Key to Universe

The New York Times

Theory: 1964
LHC + Experiments
Concept: 1984
Construction: 2001
Operation: 2009-12

A billion people watched

Highly Reliable High Capacity Networks Had an Essential Role in the Higgs Discovery... And will have in Future Discoveries
LHC Data Grid Hierarchy
A Worldwide System

Tier 0 +1

Tier 1
10 – 40 to 100 Gbps

London
Paris
Taipei

Tier 2
10 to N x 10 Gbps

Tier 3
10 to N x 10 Gbps

Tier 4
1 to 10 Gbps

CERN Center
PBs of Disk; Tape Robot

Chicago

Tier 2

CACR

11 Tier1 and
160 Tier2 + ~300 Tier3 Centers

100s of Petabytes in 2012-13
100 Gbps+ Data Networks

Synergy with US LHCNet:
State of the Art Data Networks

A Global Dynamic System
A New Generation of Networks: LHCONE, ANSE
The original MONARC model was (largely) hierarchical

Main evolutions introduced since 2010:

- Meshed data flows: Any site can use any other site as source of data
- Dynamic data caching: Analysis sites pull datasets from other sites “on demand”, including from Tier1s and Tier2s in other regions
 - Combined with strategic pre-placement of data sets
- Remote data access: jobs executing locally, using data cached at a remote site in quasi-real time
 - Possibly in combination with local caching
- Federated Data Systems: FAX, PhEDEx, Alien
- Variations by experiment; but a common element is: Increased reliance on network performance!
ATLAS Data Flow: 2009- April 2013

2012-13: >50 Gbps Average, 112 Gbps Peak

171 Petabytes Transferred During 2012

Traffic to Tier2s: to 75 Gbps Jan. 2013

2012 Versus 2011:
+70% Average
+180% Peak

After Optimizations designed to reduce network traffic in 2010-2012

42 PetaBytes Transferred Over 12 Months
= 10.6 Gbps Avg. (>20 Gbps Peak)

2012 Versus 2011: +45%

Higher Trigger Rates and Larger Events in 2015
Remarkable Historical ESnet Traffic Trend

ESnet Traffic Increases
10X Each 4.25 Yrs, for 20+ Yrs
15.5 PBytes/mo. in April 2013

The Trend Continues

Actual Dec 2012
12 PBy/mo

April 2007
1 PBy/mo.

Nov 2001
100 TBy/mo.

Jul 1998
100 TBy/mo.

Oct 1993
1 TBy/mo.

57 months

53 months

40 months

38 months

Avg. Annual Growth: 72%

Projection to 2016: 100 PBy/mo

W. Johnston, G. Bell

Log Plot of ESnet Monthly Accepted Traffic, January 1990 – December 2012
New waves starting Early 2014; Start deploying ESnet6 by 2017. 10x100G on all routes by 2017; Internet2 contract expires. Add routers, optical chassis incrementally starting in 2015. ESnet5 optical system full in 2020 88 x 100G. Routed net exceeds ESnet4 complexity.
SC12 November 14-15 2012
Caltech-Victoria-Michigan-Vanderbilt; BNL

FDT Memory to Memory
300+ Gbps In+Out Sustained from Caltech, Victoria, UMich
To 3 Pbytes Per Day

HEP Team and Partners
Have defined the state of the art in high throughput long range transfers since 2002

FDT Storage to Storage
http://monalisa.caltech.edu/FDT/
175 Gbps (186 Gbps Peak)

Extensive use of FDT, Servers with 40G Interfaces. + RDMA/Ethernet

SC13: 1 Terabit/sec Trials

1 Server Pair: to 80 Gbps (2 X 40GE)
The Core of LHC Networking: LHCOPN and Partners

Dark Fiber Core Among 19 Countries:
- Austria
- Belgium
- Croatia
- Czech Rep.
- Denmark
- Finland
- France
- Germany
- Hungary
- Ireland
- Italy
- Netherlands
- Norway
- Slovakia
- Slovenia
- Spain
- Sweden
- Switzerland
- UK

+ ESnet, NRENs in Europe, Asia; Internet2, NLR, Latin Am., Au/NZ

Simple and Reliable, for Tier0 and Tier1 Operations
Guaranteeing High Performance in Challenging Environments

- Intercontinental links are more complex than terrestrial ones
- More fiber spans, more equipment; Multiple owners
- Hostile submarine environment
- A week to Months to repair

US LHCNet Link Availability

Target Service Availability: 99.95%

High-Availability Transoceanic solutions require multiple links with carefully planned path redundancy
Hybrid Networks: Dynamic Circuits with Bandwidth Guarantees

ESnet Accepted Traffic 2000-2012
Half of the 100 Petabytes Accepted by Esnet in 2012 was Handled by Virtual Circuits with Guaranteed Bandwidth

Using “OSCARs” Software by ESnet and collaborators

Large Scale Flows are Handled by (Dynamic) Circuits: Traffic separation, performance, fair-sharing, management
In a nutshell, LHCONE was born (out the 2010 transatlantic workshop at CERN) to address two main issues:

- To ensure the services to the science community maintain their quality and reliability; *Focus on Tier2/3 operations*
- To protect existing R&E infrastructures against potential “impacts” of very large data flows

LHCONE is expected to

- Provide some guarantees of performance
 - Large data flows sent across managed bandwidth: to provide better determinism than shared IP networks
 - Segregate these from competing traffic flows
 - Manage capacity as # sites x Max flow/site x # Flows increases
- Provide ways to better utilize TA and other network resources
 - Through traffic Engineering and flow management capability
- Leverage investments being made in advanced networking
Open Exchange Points: NetherLight Example
1-2 X 100G, 3 x 40G, 30+ 10G Lambdas, Use of Dark Fiber

Inspired Other Open Lightpath Exchanges
- Daejeon (Kr)
- Hong Kong
- Tokyo
- Praha (Cz)
- Seattle
- Chicago
- Miami
- New York

Convergence of Many Partners on Common Lightpath Concepts
Internet2, ESnet, GEANT, USLHCNet; nl, cz, ru, be, pl, es, tw, kr, hk, in, nordic
LHCONE Overview and Activities

- Current activities fall in three areas:
 - Multipoint connectivity through a L3VPN (with Virtual Routing and Forwarding); should be restricted to the LHC Community
 - Routed IP, virtualized service
 - Point-to-point dynamic circuits
- R&D, targeting demonstration this year
 - Develop a Point-to-point service prototype, aka “experiment”
- Common to both is logical separation of LHC traffic from the General Purpose Network (GPN)
 - Avoids interference effects
 - Allows trusted connections and firewall bypass
 - Matches guaranteed bandwidth to priority class of work
- More R&D in SDN/OpenFlow for LHC traffic
 - For tasks which cannot be done with traditional methods
LHCONE: A global infrastructure for the LHC Tier1 Data Center – Tier 2 Analysis Center Connectivity

Phase 1: VRF
Bill Johnston, ESNet

End sites – LHC Tier 2 or 3 unless indicated as Tier 1
Regional R&E communication nexus
Data communication links, 10, 20, and 30 Gb/s
See http://lhcone.net for details.
DYNES is extending circuit capabilities to ~50 US campuses

DYNES is ramping up to full scale, and will transition to routine Operations in 2013-14

An excellent example of NREN/Science partnership
Will be an integral part of the point-to-point service in LHCONE
Extending the OSCARS scope; Transition: DRAGON to PSS, OESS
The Goal: Provide reserved bandwidth between a pair of end-points.

Several provisioning systems developed by R&E community: OSCARS (ESnet), OpenDRAC (SURFnet), AutoBAHN (GEANT), G-Lambda-A (AIST), G-Lambda-K (KDDI)

For Inter-domain: moving towards an emerging standard(s)
- OGF NSI: The Network Services Interface
- Connection Service (NSI CS):
 - v1 ‘done’ and demonstrated e.g. at GLIF 2012 and SC’12

GLIF: testbed for NSI-based systems
- E.g. Automated-GOLE Working Group is actively developing the notion of exchange points automated through NSI
- GOLE = GLIF Open Lightpath Exchange www.glif.is
ANSE: Advanced Network Services for Experiments. Management of LHC data flows

- **US NSF funded project by Caltech, Vanderbilt, U. Michigan, UT Arlington**
- **Includes both US CMS and US ATLAS**
- **Interface advanced network services with LHC data management systems**
 - *PanDA in (US) Atlas* [De et al.]
 - *PhEDEx in (US) CMS* [Wildish et al.]
- **Advanced use of dynamic circuits for optimized deterministic workflow**
- **Requires that the higher-levels in the experiments’ software stacks interact directly with the network**
- **A fertile field for OpenFlow and other SDN Developments**
- **Directly benefit the throughput and productivity of the major LHC experiments**
ANSE: Advanced Network Services for [LHC] Experiments

- **Goals:** Improve overall throughput and task times to completion
- Enable strategic workflow planning including network capacity as well as CPU and storage as a co-scheduled resource
 - Use network resource allocation along with storage and CPU resource allocation in planning data and job placement
- **Path:** Integrate advanced network-aware tools in the mainstream production workflows of ATLAS and CMS
 - Use accurate (as much as possible) monitoring information about the network (capacity, load, topology) to optimize workflows
 - Use existing tools and installations where they exist [FAX, PhEDEx, AAA] ; extend functionality of the tools to match experiments’ needs
 - Identify and develop tools and interfaces where they are missing
- **Exploit state of the art** in high throughput long distance data transport, network monitoring and control
Openflow Link Level Multipath Switching: SDN use case in LHCONE

- Address problem of topology limitations in large scale networks

- Basic idea: Flow-based load balancing over multiple paths
 - Leverage global network view of the OpenFlow controller
 - Initially: use static topology
 - Later: comprehensive real-time information from the network (utilization, topology changes) as well as interface to applications

Early results: show a large throughput improvement when using an application interface and load-aware flow assignments
What about the world network scene?
The ICFA SCIC in 2012-13

http://cern.ch/icfa-scic

2013 Reports: A Banner Year

LHC Data Rampup and Discovery; but Deepening Digital Divide

◆ Main Report: “Networking for HEP” [HN, A. Mughal, A. Barczyk]
 ➔ Updates on the Digital Divide, World Network Status

◆ 37 New Annexes + A World Network Overview
 Status and Plans of Nat’l & Regional Networks, HEP Labs, & Optical Network Initiatives

☞ LHCONE (www.lhcone.net): A New Global Architecture of Open Exchange Points

Also See:

◆ TERENA 2012 Compendium (www.terena.org): R&E Networks in Europe

◆ http://internetworldstats.com: Worldwide Internet Use

100G Evolution; Optical Transmission Revolution

- Increased multiplicity of 10G links in Major R&E networks: Internet2, ESnet, GEANT, and leading European NRENs
- Transition to 100G next-generation core backbones: Completed in Internet2 and Esnet in 2012; US 100G endsites proliferating!
- GEANT transition to 100G: Phase 1 Completed by Mid-2013
- NREN 100G already appeared and spreading in Europe and Asia: e.g. SURFnet & Budapest - CERN; Romania, Czech Rep., Hungary, China, Korea
- 100G Transatlantic (Initial trials) in 2013
- Proliferation of 100G network switches and high density 40G data center switches. 40G servers (Dell, Supermicro) with PCIe 3.0 bus
- Higher Throughput: 300G+ at SC12 – UVic, Caltech, Mich., Vanderbilt
- Trend towards SDN (Openflow, etc.): a Major Focus taken up by much of the global R&E network community and industry
- Advances in optical network technology even faster: denser QAM modulation; 400G in production (RENATER); 1 Petabit/sec on a fiber

The move to the next generation 100G networks is well underway and accelerating; 200G, 400G production networks not far away
First 400G live link in the world (Paris-Lyon) Jan. 2013

+ Other Vendor Trials: 200G wave NYC – Boston; 2 Tbps (3.3 kkm)
Optical Data Transmission: State of the Art

1 Petabit/sec On a 12-Core Fiber over 52 km
Spatial Mode + 32 QAM + Polarization + WDM Multiplexing

1.01 Pb/s Throughput: 12 Cores X 222 Channels/Core X 380G/Channel
96 bps/Hz across 11 THz [1]

http://www.ntt.co.jp/news2012/1209e/120920a.html

Other developments: Using Orbital ang. momentum; Willner et al.
Extension of cable-based telecommunication networks requires high investments in both conurbations and rural areas. Broadband data transmission via radio relay links might help to cross rivers, motorways or nature protection areas at strategic node points, and to make network extension economically feasible. In the current issue of *Nature Photonics*, researchers present a method for wireless data transmission at a world-record rate of 100 gigabits per second (Gb/s).

In their record experiment, 100 gigabits of data per second were transmitted at a frequency of 237.5 GHz over a distance of 20 m in the laboratory. In previous field experiments under the “Millilink” project funded by the BMBF, rates of 40 gigabits per second and transmission distances of more than 1 km were reached. For their latest world record, the scientists applied a photonic method to generate the radio signals at the transmitter. After radio transmission, fully integrated electronic circuits were

SCIC Monitoring WG
PingER (Also IEPM-BW)

R. Cottrell
Monitoring & Remote Nodes Dec2012

◆ **Measurements from 1995 On**

 Reports link reliability & quality

◆ **Countries monitored**

 ➔ Contain 99% of world pop.
 ➔ 99.5% of World’s Internet Users

◆ **810 remote nodes at 775 sites in 165 nations; 86 monitoring nodes;**

◆ **Strong Collaboration with ICTP Trieste, NUST(Pk), U. Malaysia**

◆ **Excellent, Vital Work:**

 A Volunteer Effort

Countries:
- N. America (3)
- Latin America (22)
- Europe (31)
- Balkans (10)
- Africa (48)
- Middle East (15)
- Central Asia (9)
- South Asia (8)
- East Asia (4)
- SE Asia (9)
- Russia (1)
- Oceania (4)
Top 4
Europe, N. America, East Asia & Australasia

Behind Europe
5 Yrs: Russia, Latin America, Middle East
9 Yrs: Southeast Asia
12-14 Yrs: So+Central Asia
15 Years: Africa

In 10 years: Russia & Latin America should catch up. Africa was falling farther behind; new cables to Africa are making a difference since 2011

Throughput Trendlines from SLAC
1998 - 2013

Derived TCP Throughput = 1460 Bytes*8bits/Byte/(RTT * Sqrt(loss)); Matthis et al.
Closing the Digital Divide: R&E Networks in/to Latin America in 2011 - 2013

- **RNP, ANSP, AmLight (US NSF), RedCLARA (EU)**

- **AmLight Connects to Atlantic Wave at 10G in Miami**

- **Subsea Links Upgraded to Four 10G links on two cables:** Sao Paulo, Rio, Santiago to Miami (RNP + AmLight)

- **Supports Rio and Sao Paulo Tier2s, and GridUNESP Regional Tier1**

- **Dark Fiber metro nets in 24 of 27 State capitals; last 3 this year**

- **Terrestrial 10G backbone:** Santiago – Sao Paulo – Rio – Fortaleza

- **100G link Rio – Sao Paulo**

- **AmLight Andes: Link to Chile, shared with the US Astronomy community**

- **Advanced net projects: GIGA, CIPO, Future Internet Testbed**

- **Huawei + Vivo: 2100km WDM links across the Amazon by the 2014 World Cup**
Networks in (LHC) DAQ Systems
Evolution and Challenges

- **Data Center Links:** 1GE is now a “commodity”; 10GE widely available from ~2007; 40GE from ~2011; 100GE from 2015?; 400GE from 2022?

- **Data Center Switches:** 24 to 48 x 10GE nearly “mass market”; Small Switches: 32 X 40GE (Dell Z9000), and Large Switches: up to 648 X 40GE or 56G IB (Mellanox SX6536) Exist today
 - One Switch could handle all the LHC Experiments’ DAQ at Run2

- **Server ports, NICs:** 1 GE is now “commodity”; 10 GE from ~2008; 40GE/56 IB (Mellanox) from 2012; 100GE expected in 2014-15; 400 GE by 2022?

- **HL LHC:** 100GE Links and NICs should be common by Start of Run3

- **But the Total Rate HLT input rate** (Projections ~ 6-32 Terabits/s each) would still require hundreds of these links:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Event-size [kB]</th>
<th>Rate [kHz]</th>
<th>Bandwidth [Gb/s]</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>20000</td>
<td>50</td>
<td>8000</td>
<td>2019</td>
</tr>
<tr>
<td>ATLAS</td>
<td>4000</td>
<td>200</td>
<td>6400</td>
<td>2022</td>
</tr>
<tr>
<td>CMS</td>
<td>4000</td>
<td>1000</td>
<td>32000</td>
<td>2022</td>
</tr>
<tr>
<td>LHCb</td>
<td>100</td>
<td>40000</td>
<td>32000</td>
<td>2019</td>
</tr>
</tbody>
</table>

Neufeld (TDOC), ECFA Workshop
ATLAS and CMS: Triggered vs. Triggerless Architectures

- **1 MHz (Triggered): CMS Example**
 - **Network Throughput:** 1 MHz with ~4 MB: Aggregate ~32 Tbps
 - **Links:** Event Builder-cDAQ: ~400 links of 100 Gbps
 - **Switch:** almost possible today; “No problem” by 2022

- **40 MHz (Triggerless): Is this feasible?**
 - **Network Throughput 40 MHz with ~5 MB:**
 Aggregate ~2000 Tbps (2 Petabits/sec)
 - **Event Builder Links:** ~2,500 links of 400 Gbps
 - **Switch:** has to grow by factor ~25 in 10 years; with Backplane capacities of 100s of Tbps: Difficult!

- **Front End Electronics**
 - **Tracker Readout Cables:** Copper!
 - **Energy, Heat and Material:** Show Stoppers!

- **NOTE:** LHCb (40 MHz) & ALICE (50 kHz Pb-Pb) will run Triggerless Post-LS2

- **Nota Bene:** Nanophotonics, and/or plasmonics, graphene transistors could bring major changes by the 2030’s [Think HE LHC]
HEP Energy Frontier Computing
Decadal Retrospective and Outlook for 2020 [Fisk]

- Resources & Challenges Grow at Different Rates Compare Tevatron Vs LHC (2003-12)
 - Computing capacity/experiment: 30+ X
 - Storage capacity: 100-200 X
 - Data served per day: 400 X
 - WAN Capacity to Host Lab: 100 X
 - TA Network Transfers Per Day: 100 X

- Challenge: 100+ X the storage (tens of EB) unlikely to be affordable

- We need to learn How to make better use of the technology
 - An agile architecture exploiting globally distributed clouds, grids, specialized (e.g. GPU) & opportunistic resources
 - A Services System that provisions all of it, moves the data more flexibly and dynamically, and behaves coherently

Challenges Shared by Sky Survey, Dark Matter and CMB Experiments.

SKA: 300 – 1500 Petabyes per Year

SKA: Several Pbps to the Correlators

Growing volumes and complexity

- CMB and radio cosmology
 - CMB-S4 experiment’s 10^15 samples (late-2020’s)
 - Murchison Wide-Field array (2013-)
 - 15.8 GPA, 100-200 MB/s
 - Square Kilometer Array (2020+)
 - PB/s to correlators to synthesize images
 - 300-1500 PB per year storage

- Direct dark matter detection
 - Order of magnitude larger detectors
 - G2 experiments will grow to PB in size
Research and Innovation Agenda
A Core Question and a Promising Approach

- A Core question: Can global research networks evolve into adaptive, self-organizing systems that respond quickly to meet the needs of HEP for Petabyte-scale operations?

- Software Defined Networking is a very promising research direction
 - Reimagine today’s inflexible, proprietary HW/SW systems as open, deeply programmable components
 - Have the potential to enable innovation by facilitating virtualization, programmability, integration.

- Achieving the goal will require talented real-time system development, and code
 - Examples do exist, with smaller (but still large) scope
LHC Outlook: to 2040+

The Road to Higher Luminosity and Energy

Integrated Luminosity (Inverse Femtobarns)

- Off to a great start in 2010-12
- LHC to 14 TeV 500/fb
- High Luminosity LHC: To 3000/fb
- LS1: To 13-14 TeV, 25 ns spacing
- LS2
- LS3
- From ~2035 On
- We will continue to extend our reach
- We have just begun

High Energy LHC: 33 or 100 TeV
Networks for HEP
Conclusions and Outlook

- Run 1 brought us a centennial discovery.
- Run 2 will bring us (at least) greater knowledge, and perhaps great(er) discoveries.
- Advanced networks have been, and will continue to be a key to the discoveries. In HEP and in other fields of data intensive science.
- Technology evolution may allow us to meet the short term network needs, but more attention and sufficient budgets will be needed.
- In the medium term, by LHC Run2: A new paradigm of circuit based networks will need to emerge.
- In the longer term, by Run3: Evolution alone will not suffice.
- A new class of global networked system are needed, building on:
 - The experiments data federations: FAX, AAA, Alien
 - New dynamic networks and methods: LHCONE, DYNES, ANSE
- Successful development of such a system, in cooperation with expert network teams both within HEP, and beyond our community:
 - Will be essential for HL-LHC
 - Would be a game-changer with global impact
THANK YOU!

Harvey Newman
newman@hep.caltech.edu
SLIDES FOR LONGER VERSION OF THE TALK
DYNES: Dynamic Network System

- A distributed virtual cyber-instrument spanning about 50 US universities and 11 Internet2 connectors which interoperates with ESnet, GEANT, APAN, US LHCNet, and many others.

- Synergetic projects include OLiMPS and ANSE.

Additional work: Ensuring traffic protection, while adapting to campus and regional configurations and policies. **New methods such as SDN.**
BACKUP SLIDES
US LHCNet Peak Utilization: Many Peaks of 5 to 9+ Gbps (for hours) on each link
Internet2 100G Network
Completed Fall 2012

Advanced Optical, Switched and Routed Services
22 Connectors Plan
50+ X 100GE Access Links by 2015

Advanced Layer 2 Services (AL2S), including dynamic circuits
Heavily involved in LHCONE
Leading DYNES with Caltech
Moving towards software defined networking (SDN)

Up to 8.8 Tbps Optical, 49 PoPs,
100G IP Service. 15.5k + 2.4k Fiber Miles

Innovation Campuses with 100G Connections:
Science DMZs, Enabled by SDN by 2014
Energy Sciences Network: ESnet5
100G Backbone Completed in Nov. 2012

2 to 6 X 10G in ESnet4 in 2011-12; 100G ESnet5 from Nov. 2012
Now 15 100G Hubs; MANs (LI, CHI, SNV); Advanced 100G Testbed
Scaling up to 40 X 100G; Dark Fiber to Carry 10/40/100G Waves
2 X 100G to BNL and 100G to Fermilab: installation 1H 2012
Monthly traffic volumes doubled in 2012, from 6 PBytes in January to 12 PBytes in December

Many GÉANT backbone links were upgraded to 2-4 X 10G in 2011-12 due to increased use

- 17 Links NL-UK, CH-FR, FR-UK; CH-IT, NL-US, CZ-DE; AT-CZ, AT-DE, AT-HU, AT-IT, CH-ES, DE-DK, ES-FR, FR-CH, HU-BG, HU-CZ, NL-DK

- 5 NRENs set to access GEANT at 50G or More this year

Transition to 100G links across Europe is now underway; Eventually plan to have 2 Tbps across the backbone.

- CERN-Budapest link 100G for distributed LHC Tier0 In Service
- Phase 1 500G optical ring completed; with 11 100G links.
- Regular status updates on GEANT 100G transition at http://www.geant.net/Network/Terabit_network/Pages/home.aspx
- Accesses at 100G and potentially N X 100G planned

Advanced Developments: LHCONE
Chinese telecoms equipment vendor Huawei successfully completed a field trial using new optical fiber transmission technologies on Vodafone’s live network, reaching 2 Terabit/s transmission over 3,325 km, or 2066 miles. This capacity is ~20 times higher than current commercially deployed 100G systems.

February 6: Orange, Alcatel-Lucent provide a live 400G link to RENATER (Paris – Lyon)

France Telecom-Orange and Alcatel-Lucent have deployed the world’s first optical link with a capacity of 400 Gbps per wavelength in a live network. Following a successful field trial, the 400-Gbps-per-wavelength fiber-optic link is now operational between Paris and Lyon (289 miles).

[System capacity: 17.6 Tbps on 44 400G waves.]

http://www.lightwaveonline.com/articles/2013/02/orange--alcatel-lucent-provide-live-400g-link-to-renater.html
WLCG Collaboration

- Distributed infrastructure of 150 computing centers in 40 countries
- 300+ k CPU cores (~ 2M HEP-SPEC-06)
- The biggest site with ~50k CPU cores, 12 T2 with 2-30k CPU cores
- Distributed data, services and operation infrastructure
FAX – Federated ATLAS Xrootd, AAA – Any Data, Any Time, Anywhere (CMS), AliEn (ALICE)

B. Bockelman, CHEP 2012
Internet World Trends: Users, Penetration, Traffic Growth

ICFA SCIC Reports, Work in 2012 and Conclusions

Networking for HEP in the LHC Era; Evolution and Revolution in 2012-13

The Move to New LHC Computing Models: LHCONE Ramps Up

SCIC Monitoring Group: Mapping the Digital Divide

Closing the Digital Divide: Model Examples and Problem Areas

Advances in High Speed Data Transfers

Optical Data Transmission: the State of the Art

SCIC Monitoring WG: Updates, Key Observations, Funding
Networking for HEP in the LHC Era: Part2
The New Computing Models and LHCONE: Part2
SCIC Monitoring WG: Mapping the Digital Divide, Part2
Closing the Digital Divide: Model & Problem Areas, Part2
Internet World Trends, Part2
Advances in High Speed Data Transfers, Part2

The Rise of Broadband: 2nd Digital Divide
The Rise of Dark Fiber Networks; Dark Fiber Networks Closing the Digital Divide
Nat’l, Continental and Transoceanic Network Infrastructures: Transition to 40G and 100G Cores
Dynamic Circuits for Large Flows: OSCARS; the DYNES Project
Global Subsea Cable Status; Capacity Growth and Price Trends
Optical Data Transmission: the State of the Art, Part 2
CESNet2 and CESNet EF: Advanced Digital and All Photonic Networks

5340 km Leased Fiber
420 Km Dark Fiber
738 km Exp. Net Facility

All-Photonic Service
Fixed Bandwidth with Fixed Delays
Useful for New Applications
Precise Timing, Real Time, Interaction with External Processes

L. Altmannova, M. Hula, R. Velc, CESNet Workshop 9/2012
Number of Hosts Monitored By Region: 1998 - 2012

Maintaining access is manpower intensive

Source: PingER project
Round Trip Time (from SLAC) Drops as African Nations Move from Geostationary Satellites to the New Undersea Cables

Minimum RTT (msec)

Rwanda: RTT shift from GEOS to Fiber

Lower RTT Tends to Increase Performance
Undersea cables continue to arrive at both African coasts (since 2009); 1000X Potential capacity

To multi-Terabits/sec; 10X more by 2014

Seacom, EASSy, TEAMs, Lion, Lion2, MainOne, GLO1, WACS in production

+ ACE, BRICS, SAex, WASACE, SACS by 2014

Triggered by the 2010 World Cup.

Connections to the African interior spreading

Plus new Mediterranean Cables to Mideast+Gulf

http://manypossibilities.net/african-undersea-cables

More comprehensive map (with terrestrial fiber):
Big Data at the Cosmic Frontier of Astrophysics and HEP

L. Bauerdick, Snowmass

A decade of data: DES to LSST

- Wide field and deep
 - DES: 5,000 sq degrees
 - LSST: 20,000 sq degrees
- Broad range of science
 - Dark energy, dark matter
 - Transient universe
- Timeline and data
 - 2012-16 (DES)
 - 2020 – 2030 (LSST)
 - 100TB - 1PB (DES)
 - 10PB - 100 PB (LSST)

Growing volumes and complexity

- CMB and radio cosmology
 - CMB-S4 experiment’s 10^{15} samples (late-2020’s)
 - Murchison Wide-Field array (2013-)
 - 15.8 Gb/s processed to 400 MB/s
 - Square Kilometer Array (2020+)
 - PB/s to correlators to synthesize images
 - 300-1500 PB per year storage
- Direct dark matter detection
 - Order of magnitude larger detectors
 - G2 experiments will grow to PB in size

Technology developments

- Microwave Kinetic Inductance Detectors (MKIDs)
 - Energy resolving detectors (extended to optical and UV)
 - Resolving power: $30 < R < 150$ (~5 nm resolution)
 - Coverage: 350nm – 1.3 microns
 - Count rate: few thousand counts/s
- 32 spectral elements for uv/optical/ir photons

From tabletop to cosmological surveys

✦ Huge image data and catalogs
 ✦ DES 2012-2016
 ✦ 1PB images
 ✦ 100TB catalog
 ✦ LSST 2020-2030
 ✦ 6PB images/yr, 100 PB total
 ✦ 1PB catalogs, 20 PB total
✦ large simulations
Future e-Infrastructure System for Science?

Managed services – operated for research communities
Individual science community operated services

Ian Bird, WLCG

Key principles:
- Governed & driven by science/research communities
- Business model: Operations should be self-sustaining:
 - Managed services are paid by use (e.g. Cloud services, data archive services, …)
 - Community services operated by the community at their own cost using their own resources (e.g. grids, citizen cyberscience)
- Software support: open source, funded by collaborating developer institutes

Application software tools and services

Collaborative tools and services
- Cloud Resource(s)
- Data Archives
- HPC Facilities
- Grid for community
- CCS for community

Networks, Federated ID management, etc.

Software investment

Future e-Infrastructure System for Science?

Ian.Bird@cern.ch
HEP Computing Circa 2020:
Possible Vision: A Global Data Intensive CDN

A Global Content Delivery Network
- Data management resources that deliver data on demand
- Cached & replicated; intelligent about data placement + mobility
- Large independent local storage systems connected to clusters is probably not the most efficient scheme
- The data federations already being deployed are a first step, but more work – and system development – is needed

Dynamic data delivery systems of this kind give a lot of flexibility in how to make use of diverse computing systems
- But put strong requirements on network capacity + capability
- While a 10k core cluster typical for 2020 will require 10 Gbps (or more) of networking for organized processing
- End users doing Analysis would require ~ 100 Gbps for rapid delivery of multi-Terabyte “Small” datasets
- Hundreds of such end users will present a challenge: also to the next-generation networks of 2020

Ian Fisk, Snowmass
Components for a working system (III)

- Monitoring: PerfSONAR and MonALISA
- All LHCOPN and many LHCONE sites have PerfSONAR deployed
 - Goal is to have all LHCONE instrumented for PerfSONAR measurement
- Regularly scheduled tests between configured pairs of end-points:
 - Latency (one way)
 - Bandwidth
- Currently used to construct a dashboard
- Could provide input to algorithms developed in ANSE for PhEDEx and PanDA
- ALICE and CMS experiments are using MonALISA monitoring framework
 - accurate bandwidth availability
 - complete topology view
MonALISA Today

Running 24 X 7 at 380 Sites

- Monitoring
 - 40,000 computers
 - > 100 Links On Major Research and Education Networks
- Using Intelligent Agents
- Tens of Thousands of Grid jobs running concurrently
- Collecting > 4M parameters in real-time

MonALISA: Monitoring Agents in a Large Integrated Services Architecture

A Global Autonomous Realtime System

World expertise in high data throughput over long range networks
Fast Data Transfer (FDT)
http://monalisa.caltech.edu/FDT

- FDT is an open source Java application for efficient data transfers
- Easy to use: similar syntax with SCP, iperf/netperf
- Based on an asynchronous, multithreaded system
- Uses the New I/O (NIO) interface and is able to:
 - Decompose/Stream/Restore any list of files
 - Use independent threads to read and write on each physical device
 - Transfer data in parallel on multiple TCP streams, when necessary
 - Use appropriate size of buffers for disk IO and networking
 - Resume a file transfer session

Open source TCP-based Java application; the state of the art since 2006
Transferring Petabytes at SC12

FDT and RDMA over Ethernet

3.8 PBytes to and From the Caltech Booth

Including 2 PBytes on 11/15
MonALISA: An Agent-based System of Distributed Services

Fully Distributed System with no Single Point of Failure

- **Global Services or Clients**
 - Dynamic load balancing
 - Scalability & Replication
 - Security AAA for Clients

- **Proxies**
 - Distributed System for gathering and Analyzing Information.

- **Agents**
 - MonALISA services

- **Network of JINI Lookup Services**
 - [Secure, & Public]

- **Clients, HL services, repositories**
VINCI: Virtual Intelligent Networks for Computing Infrastructures

Core Concepts and Real Time System Design: 2005-6

Application
End User Agent
Authentication, Authorization, Accounting
Scheduling; Dynamic Path Allocation
Failure Detection
Topology Discovery
Control Path Provisioning
Monitoring

System Evaluation & Optimization
Prediction
Learning

MonALISA
ML Agent
ML Proxy Services

MONALISA
ML Agent
ML Agent

Site A
Site B
Site C

http://monalisa.caltech.edu
VINCI (CHEP06, Mumbai)

http://indico.cern.ch/contributionDisplay.py?sessionId=6&contribId=350&confId=048
The Case for Dynamic Provisioning in LHC Data Processing

- Data models do not require full-mesh @ full-rate connectivity @ all times

- On-demand data movement will augment and partially replace static pre-placement → Network utilization will be more dynamic and less predictable, if not managed

- Need to move large data sets fast between computing sites; expected performance levels and time to complete operations will not decrease!
 - On-demand: caching
 - Scheduled: pre-placement
 - Transfer low-latency + predictability important for efficient workflow

- As data volumes grow, and experiments rely increasingly on the network performance; what will be needed in the future is
 - More efficient use of network resources
 - Systems approach including end-site resources and software stacks

- The solution for the LHC community needs to provide global reach