
1

Arrow Street:

Semi-automatic SOA / AOSOA
Pascal Costanza

ExaScience Lab, Intel, Belgium

2

Legal Notices

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

[BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, the Intel

Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo,

Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, InTru, the InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, skoool, the

skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and Xeon Inside] are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under license from Palm, Inc.

Copyright © 2013, Intel Corporation. All rights reserved.

3

E X A S C I E N C E L A B
 F L A N D E R S E X A S C A L E L A B

WAS LAUNCHED IN 2010 TO INVESTIGATE NEXT

GENERATION HIGH PERFORMANCE COMPUTING

IS A COLLABORATION BETWEEN:

INTEL, FLANDERS, IMEC, KU LEUVEN, U GENT,

VU BRUSSEL, U ANTWERPEN, U HASSELT

4

Intel Exascale Labs — Europe

Strong Commitment To Advance Computing Leading Edge:
Intel collaborating with HPC community & European researchers

4 labs in Europe - Exascale computing is the central topic

ExaScale Computing

Research Lab, Paris

Performance and scalability
of Exascale applications

Tools for performance
characterization

Comms avoiding algorithms

 Architectural simulation

Scalable kernels and RT

ExaScience Lab,

Leuven

Scalable RTS and tools

New algorithms

Intel and BSC Exascale
 Lab, Barcelona

ExaCluster Lab,

Jülich

Exascale cluster scalability
 and reliability

www.exascale-labs.eu

http://www.google.fr/imgres?imgurl=http://www2.iap.fr/users/riazuelo/img/logoCEA.JPG&imgrefurl=http://www2.iap.fr/users/riazuelo/index.html&h=213&w=217&sz=7&tbnid=e0g5b27UZQ9I_M::&tbnh=105&tbnw=107&prev=/images?q=logo+CEA&hl=fr&usg=__ZEHCoO_aADKuKHtZjYRNDlTUGE8=&ei=zuUDSvSlMuONjAfQi43ZBA&sa=X&oi=image_result&resnum=3&ct=image

5

Overview

• Manual AOS, SOA, and AOSOA representations.

• Semi-automatic SOA and AOSOA representations.

• Early results.

6

Example Class

struct C {

 double x;

 double y;

 double z;

 C () {}

 C (double x, double y, double z) :

 x(x), y(y), z(z)

 {}

};

7

Different representations for “many” objects

0 1 2 3 4 5 6 7 8 9 10 11 …

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 …
Standard AOS

8

Different representations for “many” objects

0 1 2 3 4 5 6 7 8 9 10 11 …

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 …

200 201 202 203 204 205 206 207 208 209 210 211 …

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 …

0 1 2 3 4 5 6 7 8 9 10 11 …

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 …

100 101 102 103 104 105 106 107 108 109 110 111 …

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 …

Standard AOS

SOA

9

Different representations for “many” objects

0 1 2 3 4 5 6 7 8 9 10 11 …

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 …

200 201 202 203 204 205 206 207 208 209 210 211 …

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 …

0 1 2 3 4 5 6 7 8 9 10 11 …

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 …

100 101 102 103 104 105 106 107 108 109 110 111 …

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 …

Standard AOS

SOA

0 1 2 3 4 5 6 7 8 9 10 11

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3

12 13 14 15 16 17 18 19 20 21 22 23 …

x4 x5 x6 x7 y4 y5 y6 y7 z4 z5 z6 z7 …

AOSOA

10

Advantages and disadvantages
of different representations

• AOS

- All member of each instance next to each other.

- Good for data locality, less good for vectorization.

- Not good when only a subset of the members is needed.

• SOA

- Each member of all instances next to each other.

- Good for vectorization, less good for data locality.

 (SSE2, AVX, …)

- Good when only a subset of the members is needed.

• AOSOA

- Balances advantages and disadvantages of AOS and SOA.

11

Standard AOS representation

C arr[len];

double result = 0;

for (auto i=0; i<len; ++i) {

 arr[i].x += arr[i].y * arr[i].z;

 result += arr[i].x;

}

12

Manual SOA representation

struct Cv {

 double* x;

 double* y;

 double* z;

 Cv (int len) :

 x(new double[len]), y(new double[len]), z(new double[len])

 {}

 ~Cv () {delete x[]; delete y[]; delete z[];}

};

13

Manual SOA representation

Cv arr(len);

double result = 0;

for (auto i=0; i<len; ++i) {

 arr.x[i] += arr.y[i] * arr.z[i];

 result += arr.x[i];

}

14

Manual SOA representation

• The user has to write the new class.

 (but that may be ok, because it could even be generated)

• The user has to recode all accesses to array members.
 (arr[i].x  arr.x[i])

• This requires invasive changes to the code.

• Cumbersome and annoying,

especially if it turns out that SOA is not better than AOS after all.

• Developers are not willing to do this,

and give up on the performance opportunity!

15

Manual SOA representation

• The user has to write the new class.

 (but that may be ok, because it could even be generated)

• The user has to recode all accesses to array members.
 (arr[i].x  arr.x[i])

• This requires invasive changes to the code.

• Cumbersome and annoying,

especially if it turns out that SOA is not better than AOS after all.

• Developers are not willing to do this,

and give up on the performance opportunity!

• Manual AOSOA representation is even more complicated!

16

Arrow Street

• A library for semi-automatic SOA/AOSOA data layouts.

(“array / structures” => “arrow street”)

• Based on modern C++11 language constructs,

specifically:

• std::tuple

• variadic templates

• type_traits

• lambda expressions

• Available at https://github.com/ExaScience/arrow-street

https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street

17

Semi-automatic SOA representation
with Arrow Street

struct Cr {

 double& x;

 double& y;

 double& z;

 typedef reference_type<double, double, double> reference;

 Cr (const reference::type& ref) :

 x(reference::get<0>(ref)),

 y(reference::get<1>(ref)),

 z(reference::get<2>(ref))

 {}

};

18

Semi-automatic SOA representation
with Arrow Street

table<Cr,len> array;

double result = 0;

for (auto i=0; i<len; ++i) {

 arr[i].x += arr[i].y * arr[i].z;

 result += arr[i].x;

}

19

Semi-automatic SOA representation
with Arrow Street

• The user has to write the new class.

 (but that may be ok, because it could even be generated)

• The user does not have to recode accesses to array members.
 (arr[i].x  arr[i].x)

• Only variable and parameter declarations have to be changed,

or can be turned into template parameters.

• The accesses themselves can stay the same.

• This allows for switching back and forth between AOS & SOA.

20

Semi-automatic AOSOA representation
with Arrow Street

table_array<Cr,256> array(len);

double result = 0;

for_each(array, [&] (Cr& element) {

 element.x += element.y * element.z;

 result += element.x;

});

21

Flexible representations
with Arrow Street

• table_vector<Cr,tablesize> v(len);

 table_vector<Cr,len> v(len);

 table_vector<Cr,1> v(len);

 std::vector<C> v(len);

• table_array<Cr,tablesize,len> a;

 table_array<Cr,len,len> a;

 table_array<Cr,1,len> a;

 std::array<C,len> a;

22

First results (on Core i7 860 @ 2.80 GHz)

len: 100000

repeat: 1000000

flat AOS array: 171 sec

flat SOA array: 63 sec

std::array: 171 sec

nested SOA array, tablesize 1: 182 sec

nested SOA array, tablesize max: 63 sec

nested SOA array, tablesize 256: 70 sec

std::vector: 167 sec

nested SOA vector, tablesize 1: 212 sec

nested SOA vector, tablesize max: 64 sec

nested SOA vector, tablesize 256: 70 sec

23

First results: N-body kernel, original code

static float xx[N], yy[N], zz[N], mass[N], vx1[N], vy1[N], vz1[N];

for (i=0; i<M; ++i) {

 step(n, xx[i], yy[i], zz[i], c0, c1, xx, yy, zz, mass,

 &dx1, &dx2, &dx3);

 vx1[i] += dx1 * f;

 vy1[i] += dy1 * f;

 vz1[i] += dz1 * f;

}

24

N-body: New code

struct body {

 float xx, yy, zz, mass, vx1, vy1, vz1;

};

static body bodies[N];

for (i=0; i<M; ++i) {

 d1 = step(bodies, n, i, c0, c1);

 bodies[i].vx1 += d1.x * f;

 bodies[i].vy1 += d1.y * f;

 bodies[i].vz1 += d1.z * f;

}

25

N-body: Arrow Street code

struct body {

 float &xx, &yy, &zz, &mass, &vx1, &vy1, &vz1;

… };

static soa::table<body,N> bodies;

for (i=0; i<M; ++i) {

 d1 = step(bodies, n, i, c0, c1);

 bodies[i].vx1 += d1.x * f;

 bodies[i].vy1 += d1.y * f;

 bodies[i].vz1 += d1.z * f;

}

26

N-body: Arrow Street code

struct body {

 float &xx, &yy, &zz, &mass, &vx1, &vy1, &vz1;

… };

static soa::table<body,N> bodies;

for (i=0; i<M; ++i) {

 d1 = step(bodies, n, i, c0, c1);

 bodies[i].vx1 += d1.x * f;

 bodies[i].vy1 += d1.y * f;

 bodies[i].vz1 += d1.z * f;

}

 Only declarations change.

 Client code remains the same

 as in traditional AOS code.

 Performance of Arrow Street code is the

 same as manually optimized data layout!!!

}

}

27

Other early results

- Helsim

- 3D Electromagnetic Particle-In-Cell Simulation

with In-Situ Visualization.

- Developed at Intel ExaScience Lab, Belgium.

- Arrow Street improves performance

in charge/current deposition and particle moving.

28

Other early results

- Quaternion benchmark

- Data representation used for animation and gaming systems.

- Case study on Arrow Street performed at Intel.

- Performance improvements in compute-intensive algorithms,

competitive with Cilk Extended Array Notation.

29

Additional features

- Support for nested AOSOA representations.

- Support for complex data structures (composition/inheritance)

- Support for standard containers, especially iterators

- Parallel iteration using Cilk and TBB

- …including support for TBB range concept.

- No support for std::deque and OpenMP yet,

but should be easy to add.

- Open source release at https://github.com/ExaScience/arrow-street

https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street
https://github.com/ExaScience/arrow-street

30

Conclusions

- SOA and AOSOA data representations are beneficial

for SIMD instructions (SSE2, AVX).

- Current compilers do not support SOA/AOSOA well.

- Manual SOA/AOSOA is cumbersome and invasive,

and developers give up on performance opportunity.

- Arrow Street is a pure library solution for C++11

that makes semi-automatic SOA/AOSOA

substantially easier to express.

Thank You

31

