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Gravitational Waves
* Einstein’s General Theory Of Relativity h+ hx
predicts the existence of gravitational waves
(1916). Yet to be directly detected. L. 3 ‘
« Cause a time varying curvature of space-time,
propagating at the speed of light. S LA AARARASAS RARA AAARARIAL

* Sources have non-zero quadrupole moment
and large mass-energy flux.
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* GW radiation carries energy away from I F
oy . Q -
emitting system/object. 5 F
E . GR theory
* Induce an extremely small spatial strain, o
h = 1072 - large scale detector. e
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*Best indirect evidence of GWs from e

observation of binary pulsar PSR 1913+16. S
Taylor & Weisberg
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Iectromagnetic Waves

* Light interacts strongly with matter and
may be absorbed/dispersed or in some
cases never detected.

* Easy to detect — eyes, astronomy.

* Light frequencies emitted dependent
upon the composition and processes
occurring in outermost layers of source.

* Frequency range: EM spectrum.

* Detailed image formation.
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Gravitational Waves

* GWs interact very weakly with matter.
The Universe is virtually transparent to
GWs .

* Very difficult to detect — not detected.

* GW frequencies depend upon bulk
internal and external dynamics of the
system.

* Frequency range: Audio.

* Direct probe of internal motion.

In a sense we can see the Universe with EM waves and listen with GWs.

If detected GWs will offer a new window on the Universe.



Compact Binary System

Inspiral Merger Ringdown

| |
///_;ﬂ Eu> ] o~
|

known | supercomputer; known

~1000 cycles | Simul%\tions [
-1 min P,

Burst

Binary merger

)

Expected Sources of GWs

Continuous

Neutron Star

Stochastic

. o [
Astrophysical

Cosmological



N

- Network of three detectors permits GW source direction ~ —_

 Detection principle essentially Michelson
Interferometric length sensing.

* Several Km-scale interferometric detectors
built. LIGO (USA), VIRGO (ITALY), GEO600
(Germany), TAMAS3O00 (Japan).

estimation which can be passed to robotic telescopes to _
search for coincident electromagnetic events. : =
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* Motivates the need for real time analysis.
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Gravitational Wave Detector Noise

GW detection is hindered by the presence of many sources of noise.

Fundamental noise — intrinsic randomness of the physical detection principle.
* Laser power shot noise — high frequency (higher laser power).
* Thermal noise — mid frequency (ALIGO-cooling).

Technical noise — experimental design.

* Power line harmonics (e.g. 60Hz USA) (Signal processing).

 Thermal resonances of mirror suspensions (Signal processing).

» Scattering/absorption of laser light by particles (Operate in high vacuum ).
» Stray light (Sealed light paths and light baffles).

External noise — environmental disturbance of the experiment.

e Seismic activity (Pendulum suspension of mirrors).

* Anthropogenic — vehicular activity, pedestrian (Monitoring).

* Gravity gradient noise — local changes in density underground.
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Strain Sensitivity of LIGO Interferometers
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GW Data Analysis

Noise severely impairs GW signal detection algorithms and so raw strain
data requires two main signal processing steps.

- Whitening — equalise the power spectrum.

 Line removal — subtract narrow band noise.
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* We have developed PIIR, a line removal and monitoring tool.



Line Subtraction at GEO600

* Lines may vary slightly in

I
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phase. Q

* PIIR filter is a data driven
oscillator which locks onto
line frequency and phase.

* Successful implementation at GEO600.
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Signal Detection using Cross-Correlation

* Modelled waveforms — Matched Template
* Cross-correlate detector output with waveform.

* Optimal if signal is known.
* Large template banks.

e Unmodelled
* Excess power or CC multiple detector output.

* Current approach to CC

* FFT blocks of data —> FFT! gives CC.
* FFT is fast, Nlog,N cf. time domain CC N2.

* Problems with this method

* edge effects of windowing FFT.
e compromise time resolution.

* We have developed a rapid time domain
estimator of CC and propose a comparison
with methods currently in use.
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Time Domain Cross-Correlation Estimation

CC approximation (RTCC) Discrete CC definition
N-1
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* Performance ' RTCC (0=0.0315)
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« Computes CC faster than sampling rate 16384/s.

« Symmetric treatment of input data. |

8.1

* Detect signals with low SNR .
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* RTCC output characterisation
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« Demonstrated output of CC noise is Gaussian in . |
applied use.
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» Suitable for event trigger generation.
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Sensitivity Demonstration

Sine + Noise

Sine wave unit amplitude buried
in Gaussian noise (0=8).
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Current Work — Offline/Online RTCC Implementation

* Implement RTCC/PIIR into existing LIGO detector software (GDS/DMT).

* Testing sensitivity of RTCC on archived detector data (Frames) (Big Dog ?).

Caltech or Athena cluster node
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Future Work

« Comparison of PIIR line tracking/removal with existing methods.
* Blind signal injection analysis.

 Contrast detection efficiency of existing event trigger algorithms
with our CC estimator as input and/or triggers we develop.

* Blind signal injection analysis.

* Investigate potential of RTCC as a detector diagnostic/commissioning tool.

* Investigate the Frequentist and Bayesian approaches to data analysis in
this field.
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