Precision Physics with leptons: g-2, LFV and EDMs

Thomas Teubner

'A very incomplete experimental overview from a theorist'

[Sorry no time to cover tau physics, eDMs]

Thanks to M. Lancaster, L. Roberts, D. Glenzinski, Y. Kuno, T. Mibe, N. Saito, D. Stoeckinger, D. Nomura for slides and help with the talk

Introduction/Motivation: g-2, LFV, EDMs

Why in one talk?

- Low energy, precision, intensity, single-number experiments
- Realistic chance to `see' physics beyond the SM
- in turn constrain/distinguish between models
- Complementary to high energy searches at the LHC:
 - un-coloured sector so far not strongly constrained
 - leptons ideal for low energy precision studies

We know already:

- v masses (small) and mixing: point towards some high-scale (GUT) physics,
 so LFV in neutral sector established, but no Charged LFV seen so far
- No direct signals for BSM from LHC so far: some models like CMSSM are in trouble/excluded already when trying to accommodate LHC exclusion limits and to solve muon g-2

Introduction: Lepton Dipole Moments

Flavour Conserving:

 U_{ik}

 ν_L

• Interaction with E and B fields: ${\cal H} = - \vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$

- g-2: $\vec{\mu} = g \frac{e}{2m} \vec{s}$ Dirac: g = 2 Schwinger (1948): $a \equiv (g 2)/2 = \alpha/(2\pi)$
- EDM: $\vec{d} = \eta \frac{e}{2mc} \vec{s}$ is CP-violating and very small within the SM

(from quark CKM in 4-loop diagrams $~d_e \sim 10^{-38} e\,\mathrm{cm}$, larger from Maj. v's)

Flavour Violating:
$$B(\mu \to e \gamma) = \frac{\alpha}{2\pi} \left| \sum_k U_{ek} U_{\mu k}^* \frac{m_{\nu_k}^2}{m_W^2} \right|^2 < 10^{-54}$$
 EDM or CLFV measurement $\neq 0$ would be a clear signal for NP

Also $\mu \to e \, e^+ e^-$ and $\mu \, N \to e \, N$ `conversion', all procs. have similar diagrams

Status of the muon g-2: SM prediction

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NP?}}$$

- QED: Kinoshita et al. 2012: 5-loop completed (12672 diagrams) □
- EW: 2-loop □
- Hadronic: the limiting factor of the SM prediction

L-by-L: - so far use of model calculations, form-factor data will help improving

- in the future: lattice QCD predictions (first results encouraging)
- several groups: USQCD, UKQCD, ETMC, ... much increased effort

Vacuum Polarisation: use of e+e- had. cross section data; big improvements foresees

Kinoshita et al: g-2 in QED at 5-loop order

Kinoshita et al: g-2 in QED at 5-loop order

A triumph of perturbative QFT and computing

[From M. Hayakawa (tau2012)]

$$a_{l}(\text{QED}) = a_{l}^{(2)} \times \frac{\alpha}{\pi} + a_{l}^{(4)} \times \left(\frac{\alpha}{\pi}\right)^{2} + a_{l}^{(6)} \times \left(\frac{\alpha}{\pi}\right)^{3} + a_{l}^{(8)} \times \left(\frac{\alpha}{\pi}\right)^{4} + a_{l}^{(10)} \times \left(\frac{\alpha}{\pi}\right)^{5} + \cdots$$

Table: $a_{\mu}(\text{QED})$ at each order 2n, scaled by 10^{11}

order $2n$	using $lpha(\mathrm{Rb})$	using $lpha(a_e)$
2	116 140 973.318 (77)	116 140 973.213 (30)
4	413 217.6291 (90)	413 217.6284 (89)
6	30 141.902 48 (41)	30 141.902 39 (40) _{NEW}
8	381.008 (19)	381.008 (19)
10	5 .0938 (70)	5.0938 (70)
sum	116 584 718.951 (80)	116 584 718.846 (37)

Status of the muon g-2 SM prediction: hadronic VP

Use of data compilation for hadr. VP:

pQCD not useful. Use the dispersion relation and the optical theorem.

$$extbf{ www}=\int rac{ds}{\pi(s-q^2)} \operatorname{Im} extbf{ www}$$
had.

2 Im
$$\sim$$
 had. $\int d\Phi \left| \sim \right|^2$

$$a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \Longrightarrow Lower energies more important $\Longrightarrow \pi^+\pi^-$ channel: 73% of total $a_\mu^{\mathrm{had,LO}}$

Data from many exps. for many final states from many experiments;

- traditional 'scan' (tunable e+e- beams)
- 'Radiative Return' at meson factories, eg

Status of the muon g-2 SM prediction

Several groups have produced hadronic compilations over the years.

Here: Hagiwara+Liao+Martin+Nomura+T

QED contribution	11 658 471.808 (0.015) ×10 ⁻¹⁰	Kinoshita & Nio, Aoyama et al					
EW contribution	15.4 (0.2) $\times 10^{-10}$	Czarnecki et al					
Hadronic contribution							
LO hadronic	694.9 (4.3) $\times 10^{-10}$	HLMNT11					
NLO hadronic	$-9.8 (0.1) \times 10^{-10}$	HLMNT11					
light-by-light	$10.5 (2.6) \times 10^{-10}$	Prades, de Rafael & Vainshtein					
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰						
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg					
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy					

(Numbers taken from HLMNT11, arXiv:1105.3149)

Status of the g-2 SM prediction: $a_{\mu}^{\mathrm{NP}}=26\times10^{-10}$?!

Recent history plot:

SM prediction consolidated, though 'the devil is in the detail';

- EXP+TH will have to work hard to match planned exp. improvements (see below):

Data combination can be non-trivial:

- More hadronic cross section data from: KLOE, BaBar, Belle(II), CMD-3, SND, BESIII
- Radiative corrections/Monte Carlos
- Improved model predictions for I-by-I
- Lattice QCD

g-2 and BSM physics

Many physics models probed by g-2

Large change wrt SM prediction

Extended technicolor (muon mass generated radiatively)

SUSY (natural, gauge-mediated, ...), RS, large ED, dark γ

Z', W', Little Higgs, Universal ED, 2HDM

SM prediction changed little

g-2 and BSM physics: SUSY?

SUSY could easily explain g-2:

Main 1-loop contributions:

Simplest case:

$$a_{\mu}^{\rm SUSY} \simeq sgn(\mu) \, 130 \times 10^{-11} \, \tan \beta \left(\frac{100 \, {\rm GeV}}{\Lambda_{\rm SUSY}} \right)^2$$

- Needs $\mu>0$, `light' SUSY-scale Λ and/or large tan β to explain 260 x 10⁻¹¹
- This is already `excluded' by LHC searches in the simplest SUSY scenarios (like CMSSM); causes large χ^2 in simultaneous SUSY-fits with LHC data and g-2
- However note: SUSY does not have to be minimal (w.r.t. Higgs), could have large mass splittings (with lighter sleptons), or corrections (to g-2 and Higgs mass) different from simple models, or not be there at all
- g-2 constrains params, distinguishes between NP models 'degenerate' for LHC

g-2 constrains SUSY

LHC with (100 fb⁻¹) can determine $tan(\beta)$ to 50%, with g-2 to 10%

g-2 complements LHC data selecting in the vast SUSY (param/model) space

Guidice, Paradisi, Strumia JHEP 1210, 186

SUSY in CLFV and dipole moments

Contributions to CLFV and DMs related to elements of slepton mixing matrix:

Large contributions to g-2 → large LFV, but:

bound from MEG on μ -> e γ rules out most of the parameter space of certain SUSY models:

Large g-2 → Large cLFV

G. Isidori, F. Mescia, P. Paradisi, and

D. Temes. PRD 75 (2007) 115019

MEG limit now even:

 $Br(\mu \to e\gamma) \times 10^{11}$

$$5.7 \times 10^{-13} \longrightarrow$$

SUSY in CLFV: conversion vs μ ->e γ

Expected limits from current and future CLFV experiments (conversion vs μ ->e γ) [from Calibi et al, arXiv:1207.7227]

g-2 and low scale NP: probing 'dark photons'

$$\mathcal{L}_{A'} = -\frac{1}{4} F_{\mu\nu}^{A'} F^{A'\mu\nu} + \frac{1}{2} m^2 A'_{\mu} A'^{\mu} - e\epsilon A'_{\mu} J_{\text{em}}^{\mu} + g\epsilon \tan\theta_W \frac{m^2}{m_Z^2} A'_{\mu} J_Z^{\mu}$$

200x10⁻¹¹ contribution to a₁₁

- Dark photon A' of mass 20
 ...200 MeV from extra U(1)
- Contributions to g-2 via mixing with photon not (yet) excluded
- APEX and HPS @ JLAB,
 MAMI and MESA in Mainz

Experiments at the high precision/intensity frontier

CLFV: Limits in different processes

Muon to electron conversion experiments aiming for single event sensitivity of 2x10⁻¹⁷

CLFV: Experimental Technique. MEG limits

- MEG at PSI: 10⁸ `stopped' μ+/sec
- Limit with 2011 data: $Br(\mu -> e \nabla) < 5.7 \times 10^{-13}$ (90% CL Excl.)
- `Eliminates' SUSY models, fitting g-2 and CLFV
- With naïve power counting: $oldsymbol{\Lambda}_{
 m NP} > \mathcal{O}(10^5~{
 m TeV})$
- Doubled statistics expected his summer
- Upgrade aiming at 6 x 10⁻¹⁴

CLFV: Conversion vs decay processes

Suffer, at the highest rates, from accidental backgrounds that scale as muon rate²

`Conversion' process can occur due to

- 'dipole like' diagrams (like decays)
- four fermion operators,
- leptoquark or Z' exchanges...

Signals in reach in many models!

Sindrum-II (PSI) 2004:

$$Br(\mu^- + Au \to e^- + Au) < 7 \times 10^{-13}$$

Conversion has a simple one particle signature: $E_e <^\sim m_\mu$, easy to separate from `normal' Decay In Orbit Arguably best route to highest sensitivity at high muon rates

CLFV: the route to SES of 10⁻¹⁷: Pulsed proton beam

AC dipole/collimator system kicks out the out-of-time particles

CLFV: COMET @ JPARC

COMET to be built in two phases

- Phase-I : now – 2016

- Phase-II: 2017 – 2020

Current Mu2e/COMET sensitivity estimates of BR < 10⁻¹⁶ extrapolate current background knowledge over 4 orders of magnitude...

COMET Phase-I Aims:

- 1. Demonstrate that beam extinction >=10⁻⁹ can be achieved
- 2. Measure in-situ backgrounds: neutrons, anti-p, nuclear capture products and so refine/optimise the simulation.
- 3. Test final/prototype detectors
- 4. Measure conversion process with sensitivity **x100 that of SINDRUM-II** ie go below 10⁻¹⁴: physics-wise comparable to the

MEG (2013) limit.

CLFV: COMET construction has begun

UK Groups (Imperial, Manchester, Oxford, UCL, RAL)

- production target
- trigger / DAQ
- offline simulation and framework
- late arriving particle tagger

CLFV: Mu2e @ FNAL

Same physics reach as COMET Phase-II

Consists of 3 superconducting solenoid systems

DOE CD1 approval granted in 2012

Mu2e and g-2 @ FNAL: Proton Beam Delivery

Many components shared between g-2 and Mu2e

Mu2e and g-2 @ FNAL: Muon Campus

Construction of the g-2 building has begun

CLFV: Timelines and expected sensitivities

[Scientific case for Mu3e accepted by PSI. First tests of prototype sensors at DESY.] [Budget for COMET Phase-I beam line approved.]

g-2: the story has just begun...

BNL measurement differs from SM prediction by about 280 x 10⁻¹¹ (\sim 3.5 σ)

Have to firmly establish discrepancy and find/constrain NP models

g-2 @ FNAL: aiming for 0.14 ppm precision

- Use established technique (& apparatus)
- Increase # of muons by factor of 21 to reduce statistical error by over 4
- 3. Reduce systematics by factor of 3

$$\omega_a = \omega_{\rm spin} - \omega_{\rm cyclotron}$$

BNL uncertainty (10-11)

Proposed FNAL uncertainty (10⁻¹¹)

 $54 \text{ (stat)} \oplus 33 \text{ (sys)} \rightarrow 11 \text{ (stat)} \oplus 11 \text{ (sys)}$

SM uncertainty (10⁻¹¹) now

SM uncertainty (10⁻¹¹) 2017

42 (HVP) \oplus 26 (HLBL) \rightarrow 15 \oplus 15

g-2 @ FNAL: work has begun

Must be shipped in one piece

g-2 @ FNAL: planned transport of the ring

4 week journey of the ring from BNL to FNAL to begin June 2013

CDR being finalised now

Expect DOE CD1 in summer

g-2 @ FNAL: UK contributions

Proposed contributions from 5 institutes in 5 areas:

- Construction of straw trackers (Liverpool)
- Squid Magnetometer (Oxford)
- DAQ (UCL/Oxford)
- Injection system (STFC RAL TD/STFC Cockcroft)
- Physics optimisation (hadronic SM contribution)

First beam in muon storage ring @ FNAL in 2016.

Complementary!

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$a_{\mu} - \frac{1}{\gamma^2 - 1} = 0 \qquad \boxed{\eta \approx 0}$$

$$\eta \approx 0$$

$$\gamma_{\text{magic}} = 29.3$$

$$p_{\text{magie}} = 3.09 \text{ GeV}/c$$

J-PARC Approach

$$\vec{E} = 0$$

$$\vec{E} = 0 \qquad \vec{\omega} = \vec{\omega}_a + \vec{\omega}_{\eta}$$

4m diameter

$$\vec{\omega}_a = -\frac{e}{m} a_\mu \vec{B}$$

g-2: BNL/FNAL vs J-PARC

	BNL-E821	Fermilab	J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		Very weak magnetic
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

Conclusions

- Low energy precision experiments with leptons strongly test the SM and already exclude/constrain many BSM scenarios
- g-2, CLFV and EDMs often complementary to direct searches; rich experimental programme involving many facilities
- Muon g-2 discrepancy consolidated at $> 3 \sigma$, but no signs for SUSY at the LHC so far
- Big improvements in sensitivity for future projects, eg g-2 and Mu2e @ FNAL, g-2 and COMET @ J-PARC
- Groups from UK hope to contribute significantly to this!

Spares

g-2 @ J-PARC: schedule

Need to be competitive with Fermilab g-2 which starts in 2016.

g-2 and SUSY

LHC/Dark Matter data rule out much of light squarks / gluino param.-space, but light sleptons (best limits from LEP) still not excluded

"Looking to (SUSY) models with a different connection between the coloured and uncoloured sector, not only seems timely now, but mandatory."

John Ellis et al, arxiv:1207.7315

CLFV: COMET Phase-I

Cylindrical detector

has higher acceptance but poorer resolution compared to transverse/phase-II detector

Mu2e: Schedule

Mu2e Schedule

g-2 @ FNAL: UK Contributions

Construction / design of straw trackers with FNAL

Straw trackers:

- understand and correct for pileup effects in calorimeter
- monitor beam trajectory / losses
- measure muon electric dipole moment

g-2 @ FNAL: UK Contributions

Squid Magnetometer

- to improve magnetic field monitoring

Prototype developed for cryoEDM experiment

Pickup-loops and SQUID inside superfluid ³He

g-2 UK Contributions

Modeling of injection/kicker system (software)

Design of new inflector magnet

- reduce muon loss on injection

- Non-ferromagnetic, static with no flux leakage into storage ring
- Null storage ring field

A clever solution

For more details, see E. A. H. Physica Scripta T70, 34 (1997)

Current status of EDMs

► What about the T 'puzzle'?

- CVC hypothesis (Isospin-symm.) connects ${\bf T}^- \to {\bf T}^- {\bf T}^0 {\bf V}_{\rm T}$ to ${\bf e}^+ {\bf e}^- \to {\bf p}, \, \omega \to {\bf T}^+ {\bf T}^-$
- Sizeable Isospin-symmetry violations [from radiative corrections, mass differences $(m_{\pi^-} \neq m_{\pi^0}), \, \rho \omega \, \text{interf.}]$ $(\rightarrow \text{Cirigliano+ Ecker+ Neufeld})$
- Role of possible ρ^0 ρ^{\pm} mass difference?
- Width difference Γ_{ρ0} ≠ Γ_{ρ±}?
 Large effects possible!
 Are the model calculations reliable?

- → Benayoun et al. [EPJC55 (2008) 199; C65 (2010) 211, C68 (2010) 355]: Tok with ete [mixing + isospin breaking effects in model based on 'Hidden Local Symmetry']
- \rightarrow Jegerlehner+ Szafron [EPJC71(2011)1632]: crucial role of ρ γ mixing!

 \hookrightarrow T compatible with and confirm e⁺ e⁻, but limited gain in accuracy for a_µ!