Searches for Beyond SM physics at the LHC

Monica D'Onofrio

University of Liverpool

For the <u>ATLAS</u>, CMS and LHCb collaborations Institute of Physics, 8th April 2013

Searching for new physics

Standard Model: remarkably successful description of known phenomena, **but** requires new physics at the TeV scale.

Supersymmetry

- Introduce heavy superpartners, scalar particles, light neutral Higgs
- More than 100 parameters even in MSSM

Extra Dimensions

- Large, warped, or universal extra dimensions
- Might provide:
 - Dark Matter candidate
 - Solution to Hierarchy problem
 - Unification of forces
- Searches for new heavy particles, black holes..

Strong EW symmetry breaking

- Modern variants of Technicolor
- Might provide:
 - Dark Matter
 - Hierarchy problem
- Possibly search for composite Higgs, new heavy vector bosons (Z', W'...), 4th generation of quarks

The LHC

LHC Run I just concluded. Exceptional machine performance, high efficiency of experiments in collecting data (>90%)

Month in Year

Outline

- Not comprehensive (but quite dense!) overview of latest results of searches for new physics from ATLAS, CMS and LHCb
 - Indirect and direct searches, from 'simple' to more complex topologies, searching for the unexpected

In this talk:

Heavy Resonances

- dileptons
- diphotons
- dijets
- .. or W', Z' and heavy neutrinos in
- lepton+MET
- dibosons

Extra dimensions

- dileptons
- diphotons
- o jet +MET (also for Dark Matter)

4th generation

o chiral or vector-like

o 3rd generation, weak production, indirect constraints

Supersymmetry

Long-lived particles

Most of the results shown in this talk use the full 2012 data-set (8 TeV)

Resonances: Extra Dimensions, new gauge bosons and more

Large Extra Dimensions

$$\phi(x) = \phi(x + k2\pi R)$$

$$(k = 0, 1, 2, ...)$$

$$p = k/R$$

Z' and W' bosons

Naturally arise from many SM extensions (GUTS ~ E6,SO(10),..., extra dimensions etc..)

Randall-Sundrum

Search for high mass resonances

- ▶ *Di-lepton resonances* have a strong track record for discovery \rightarrow J/ψ, Y, Z
 - Enlarge the possible final states: looking in *dijet, dileptons, dibosons and more*!

Construct pair invariant mass and look for excesses in the high mass spectrum

Di-jet event, Mjj =5.15 TeV

Advantages

- → Sensitive to many BSM scenarios:
 - ZSSM in Sequential SM (with same Z-coupling as in SM)
 - Z' models from E6 and SO(10) GUT groups
 - The Kaluza-Klein (KK) model in Extra Dimension
 - Little, Littlest Higgs model ...
- → relatively clean with good S/B (SM-tails)
- → Experimental challenges
- detector resolution can be a key player
- extra care for E and p recontruction > 1 TeV

Di-lepton final states: resonance searches

Searches in di-electron and di-muon final states carried using the full data-set:

 Extra Dimension (Randall-Sundrum) and Z' models foresee narrow resonances

PAS EX012061 Preliminary, 8 TeV, 20.6 fb DATA 10⁴ $\gamma / Z \rightarrow \mu^{\dagger} \mu^{\dagger}$ 10^{3} tt, tW, WW, WZ, ZZ, ττ jets (data) 10^{2} $m(\mu^{\dagger}\mu^{-})$ [GeV] CMS Preliminary, 8 TeV, 19.6 ft 10⁵ 10⁴ γ/Z→e^{*}e^{*} tt, tW, WW, WZ, ZZ, ττ iets (data) 300 400 2000 1000

m(ee) [GeV]

Di-lepton searches: results

M_{G*} [TeV]

Constrain Z' and RS graviton (G*) production in e^+e^- and $\mu^+\mu^-$ invariant mass distributions

ee, μμ: Ldt = 20 fb

Exclusion limits on Sequential SM Z', E6-motivated Z' and spin-2 RS graviton.

CMS (in back-up): also dedicated search for non resonant dilepton production (ADD models)

CMS-PAS-EXO-12-027 CMS-PAS-EXO-12-031

Dijet resonance searches

Generic search for new physics in the dijet spectrum → Sensitive to excited quarks, contact interactions, axigluons, W', Z', ...

- look for **central** resonances (ATLAS: $|\Delta y| < 1.2$; CMS: $|\Delta \eta| < 1.3$)
 - CMS also separates by state (qq, qg, gg)

Observed and fitted dijet mass distributions → Search for bump over continuous background fit

$$\frac{d\sigma}{dm_{ii}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}}; \quad x \equiv m_{jj}/\sqrt{s}$$

Dijet resonance searches: results

Resonant diboson production

- Several SM extensions predict the existence of heavy resonances decaying in WW, WZ or ZZ
 - W' in Extended Gauge Model (charged, spin 1, fermionic couplings like W, triple gauge W'WZ)
 - Technimesons
 - \triangleright pT (spin 1) or aT (spin 0) in WZ or Wy
 - RS graviton (spin2, neutral, decaying in WW, ZZ or $\gamma\gamma$)

- ▶ WZ \rightarrow lllv: trilepton + Missing Transverse Momentum (E_T^{Miss})
 - Resonant diboson production (ZZ,WZ,Zγ,Wγ) taken from MC simulation
 - Reducible background from misidentified leptons (Z+jets, ttbar, Wt) from data

Example of interpretation: W' in Extended Gauge Models

In back-up: Search for resonant $ZZ \rightarrow llqq$ (l=e, μ) (7. 2 fb-1): exclude G* mass above 860 GeV

ATLAS-CONF-2012-150

W' in lepton+E_TMiss

- Search for new physics in final states with an electron or a muon and a low mass neutrino
 - Sensitive to SM-like W', split universal Extra Dimensions and Kaluza-Klein W^2_{KK} states, compositness and contact interactions

Mass exclusion limits at 95% CL for a SM-like W' boson. Limit depends on SM interference

SSM Model	mass limit (TeV)
no interference	3.35
constructive interference	3.60
destructive interference	3.10

Search for W' in t+b final states B2G-12-010

- W' decaying in top+b quarks predicted by Extra Dimensions, little Higgs and Technicolor models
- Final states events with one lepton (e or μ) + (b)-jets + E_T^{Miss}

Main SM background: top and single top

Limits also apply to W_L boson if no SMinterferences are taken into account.

4th generation, vector-like quarks

Why nothing here?

4th generation / heavy quarks

Searches for heavy quarks carried out by CMS and ATLAS

- denoted as T and B, and/or t' and b'; or Q(Q') for either flavor
- ▶ Top partners with Q=5/3 (*CMS-B2G-12-012*, in back-up) → and excited top (t*) also searched for (CMS)
- Complex final states:
 - $T \rightarrow Wb$, $B \rightarrow Wt$ or $T \rightarrow Zt$, $T \rightarrow Higgs+t$, $B \rightarrow Zb$
- Usually assume 100% BR for one decay modes
 - ATLAS uses also different hypothesis for *T* decay BR in *Wb/Ht/Zt*
 - as computed with theory-based calculations (PROTOS)

- In general both single and pair productions considered
- Mechanism and cross section depend on Q nature
 - Chiral or vector-like

Search for vector-like T

ightharpoonup T
ightharpoonup Wb, Zt, Higgs+t decays considered

ATLAS-CONF-2013-018

- ▶ Use 1 lepton (e,μ) + ≥6 jets + E_T^{Miss} plus transverse mass M_T
 - Major SM background: ttbar+jets
 - bin in number of b-tags, from 2 to 4 b-jets

Limits on weak-isospin double and singlet models:

 \rightarrow Exclude T < 790 (640) GeV for a doublet (singlet) model

Monica D'Onofrio, BSM Searches at the LHC, IoP

Search for excited top quarks

CMS-B2G-12-014

Consider t* decaying in t+gluons:

- Right-handed t* quarks expected to be the lightest spin-3/2 Regge excitation predicted in string realizations of the RS model
 - ▶ pair-production cross section ~ few pb at 500 GeV
- ▶ 1 lepton (e, μ) + >= 6 jets

1 object and nothing else: Monojets

 $qq \rightarrow gG$, $qg \rightarrow qG$, $gg \rightarrow gG$, G = Graviton

Monojets

ADD $M_D = 2 \text{ TeV}, \delta = 3$

8 April 2013

CMS Preliminary

L dt = 19.5 fb

- Monojet is a simple and striking signal
 - High-pT jet with no object to balance pT
 - Main background is $Z \rightarrow v v + jet(s)$
- Limits on graviton in Large Extra Dimension (ED):
 - Set on Modified Planck scale (MD) for N extra dimensions
- Constraints on Dark Matter (more in back-up)
- **ATLAS** result obtained with 10.8 fb⁻¹ (ATLAS-CONF-2012-147)
- **CMS** result obtained with 20.6 fb⁻¹ (CMS-PAS-EXO-12-048)

Monojets results as constraints on DM

Limit on WIMP pair production cross-section can be transformed into limit on effective WIMP-hadronic contact interaction:

Searches for Supersymmetry

→ superpartner for every SM particle, spin differs by one half

Many good reasons to consider SUSY:

- Fermion and Boson loops protect the Higgs mass at large energies (reduces "fine tuning")
 - Higgs 'candidate' → lightest neutral CP-even SUSY Higgs "h"
- unification of 3 coupling constants at high energy in one point (GUT scale at 10^{16} GeV?)
- offers (with R-parity conservation) weakly interacting massive particles for Dark Matter with a mass of O(100) GeV

Searches for SUSY @ ATLAS and CMS

A broad search programme:

- Effort to probe maximum area of SUSY parameter space possible
- Several full dataset results public for Winter:
 - ▶ 8 for ATLAS
 - 4 for CMS

More in preparation for LHCP

Wide range of signatures covered → Here will focus on 'natural' SUSY (others in back-up)

"Natural" SUSY

Lightest squarks are stop/sbottom, gluinos possibly not too heavy, gauginos accessible

Low cross-sections and large SM backgrounds require dedicated searches

Strong & strategic approach by ATLAS and CMS

Gluino-mediated \tilde{b}/\tilde{t} production

Direct \tilde{b}/\tilde{t} pair production

Direct slepton-pair production

L. Hall (LBL Workshop, 21-Oct11)

Associated gaugino production

Stop via gluino pair production (I)

- Final state contains up to 4 bjets, up to 12 jets and 4 leptons (possibly same sign):
 - Many different analyses developed to target this final state. Here the ones using full 8 TeV dataset:
 - **ATLAS:** 2 same sign leptons + (b)-jets and large E_T^{Miss} (20.7 fb⁻¹, ATLAS-CONF-2013-007):
 - $\ \square$ Very versatile analysis, mostly data-driven bkg estimate, 3 Signal Regions defined on N bjets, E_T^{Miss} and M effective
 - **CMS:** 1-lepton + >= 6 jets (2 or 3 bjets) (19.8 fb⁻¹, CMS-PAS-SUS-13-007):
 - □ Two complementary approaches:
 - □ 'Lepton Spectrum' \rightarrow large E_T^{Miss} and H_T
 - \Box 'Delta Phi' → Δφ(W,l) and total transverse energy (S_Tlep)

Stop via gluino pair production (II)

- Final state contains up to 4 bjets, up to 12 jets and 4 leptons (possibly same sign):
 - Many different analyses developed to target this final state. Here also:
 - **ATLAS:** Multijet, 3 bjets (0-lepton); 3-lepton; Same Sign leptons;
 - **CMS:** MET+HT, Alpha_T (0-lepton); Dphi, Lepton Spectrum (1-lepton); Multilepton; SS leptons;

Direct stop pair production

Decay of stop depends on SUSY mass spectrum

 \tilde{t} \bar{t} production where $\tilde{t} \to t \tilde{\chi}_1^0 \to \text{heavy}$ or: stop in b + $\chi_1^{\pm} \to \text{medium/heavy}$

Signature:

0-lepton + ≥ 6 jets (≥ 2 b-tagged jets) + E_t^{Miss} ATLAS-CONF-2013-024

1-lepton + ≥ 4 jets (1-2 b-tagged jets) + E_T^{miss} ATLAS-CONF-2013-037

Backgrounds

Semi-leptonic ttbar, $Z \rightarrow vv + jets (0-lepton)$ $W \rightarrow vv + jets (1-lepton)$

0-lepton: Loose, medium, tight signal regions using $E_{\scriptscriptstyle T}^{\rm miss}$

1-lepton: Loose, medium, tight signal regions using

various complex observables and (mT, E_t miss) cut-

and count and shape fit

CMS Results (1-lepton): CMS-PAS-SUS-12-023

ATLAS Direct stop search summary

Note that these plots overlay contours belonging to different stop decay channels, different sparticle mass hierarchies, and simplified decay scenarios.

In back-up: search for t2 \rightarrow t1 +Z and t1 in Gauge Mediated scenarios: ATLAS-CONF-2013-025

Direct stop in RPV scenarios

Signature:

3-leptons or more + 0 or ≥1 b-jets + E_t^{Miss}

Discriminant variables:

ST (scalar sum of E_T miss, H_T , L_T), mll (Z-veto if OS-SF leptons)

Backgrounds

WW, WZ, tt+V, misidentified leptons

Chargino-neutralino pair production ATLAS-CONF-2013-035

Signature: 3 leptons (e, μ), SFOS pair + E_T^{miss}

Loose, medium, tight signal regions that are Z-rich / Z depleted

Intermediate Z-depleted signal region

Backgrounds
Irreducible
WZ, ZZ, VVV,
ttbar+V
Reducible
Ttbar, Z+jets

Improved limits in challenging WZ* region

E^{miss} [GeV]

CMS (9.2 fb-1, PAS-SUS-12-022) and other ATLAS results in back-up

Indirect constraints on SUSY and other BSM models

- **•** Constrain MSSM with large tan β
- Enhancement from many BSM models
- In SM:

BR(B_s
$$\rightarrow \mu^+\mu^-$$
)= (3.23±0.27) x10⁻⁹

Maximize sensitivity by classifying events according to two variables:

- $m_{\mu\mu}$
- Boosted Decision Tree (BDT) combining geometrical and kinematic information

Data driven calibration of BDT for signal from Bd,s→h+h'-events

$$BR(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}(\text{stat.}) \pm 0.2(\text{syst.})) \times 10^{-9}$$

Probability of background-only fluctuations: $5 \times 10^{-4} \Leftrightarrow 3.5 \sigma$ (first evidence!)

LHCb $B_s \rightarrow \mu\mu$ and SUSY

What can this tell us about SUSY?

Large tan β with light pseudoscalar Higgs disfavoured

'Natural' (small fine tuning) MSSM scenarios barely affected

- SUSY-BR(Bs $\rightarrow \mu\mu$) is \sim to SM-BR
- in some scenarios can even be suppressed!

Direct searches for BMS @ LHCb

LHCb

Search for $B_s \rightarrow \mu\mu$ μμ: Strongly suppressed in SM, BR can be enhanced in SUSY models (direct production of new scalar S, and pseudoscalar P, both decaying in μμ)

LHCB-PAPER-2012-049

Limits (SM BR $< 10^{-10}$)

$$\mathcal{B}(B_s^0 \to SP) < 1.6 \ (1.2) \times 10^{-8}$$

$$\mathcal{B}(B^0 \to SP) < 6.3 (5.1) \times 10^{-9}$$
.

Search for Majorana neutrinos (N)

Non-resonant candidates

4800 4900 5000 5100 5200 5300 5400 5500 5600

Long-lived particles

Long-Lived particles

- Several new physics models could give raise to new, massive particles with long-lifetime.
 - ▶ If Δ M(chargino-neutralino) ≈ 100 MeV (eg. in **AMSB**):
 - ▶ Long-lived charginos \rightarrow disappearing tracks (ATLAS: JHEP01(2013)131)
 - If very heavy squarks mediate gluinos decay (strong virtuality):
 - ▶ Long-lived gluinos → R-hadrons (eg. Split SUSY)
 - In Gauge Mediated SUSY Breaking (GMSB) couplings might be weak → long-lived sleptons or photons depending on NLSP (gravitino LSP)
 - ▶ In **R-Parity Violating SUSY**, LSP might decay:
 - Displaced vertex (ATLAS: PLB 719 (2013) 280)
 - ▶ **Hidden sectors** (ATLAS: arXiv:1210.0435, CMS: arXiv:1211.2472):
 - Higgs decay to hidden sector neutral particles:
 - □ displaced vertex
 - Higgs decay to hidden sector fermions:
 - □ Collimated pairs of leptons (lepton-jets)

Non pointing photons

- ▶ In GMSB, the gravitino is the LSP
- Phenomenology driven by nature of NLSP:
 - If $\chi_1^0 \rightarrow \gamma$ + G, neutralino can be long-lived
 - ▶ Signature: 2 photons + high ETMiss
- Use γ flight direction and time of flight (TOF)

from Calorimeter

ATLAS-CONF-2013-1226

ATLAS: for Λ =120 TeV, τ < 8.7 ns are excluded at 95% CLs, the expected limit would exclude τ < 14.6 ns.

zDCA: difference between the z-coordinate of the γ extrapolated back to its distance-of-closest-approach (DCA) to the beamline (ie. x = y = 0) and zPV, the z-coordinate of the PV

PAS EXO-11-035

CMS: $m(\chi_1^0) > 220 \text{ GeV (for } c\tau < 500 \text{ mm), on the}$ proper decay length of the lightest neutralino, $c\tau > 6000$ mm (for $m(\chi_1^0) < 150 \text{ GeV}$) excuded at the 95% CL

Search for Stable Massive Particles

- Also referred to as Heavy stable charged particles (HSCPs)
- ▶ Within SUSY: R-hadrons →
 - Stable \rightarrow cτ ≥ size of detector
 - ▶ Produced with β <1

EXO-12-026

Tracker only

- Sensitive to any promptly produced HSCP
- Uses dE/dx in tracker to separate signal from background

Muon Only

- Sensitive to any HSCP crossing muon detector
- Uses TOF to separate signal from BKG

$$\beta^{-1} = 1 + (c \delta_t)|L$$

Tracker+TOF

• uses both

Colored sparticles can hadronise into long-lived bound hadronic states

Light quark system (LQS)

@ATLAS: R hadrons and stable sleptons http://arxiv.org/abs/1211.1597 (7 TeV)

SMP: CMS Results

Consider (and combine) 7 and 8 TeV results

Cross section upper limits at 95% C.L. on various signal models for the **tracker+TOF** analysis (at **8TeV**)

Ratio of the Cross-section upper limits at 95% C.L. to theoretical cross-section prediction for various signal models: **tracker+TOF** analysis for 2011 data (at 7TeV) and 2012 data (at 8TeV) **combined**

Each bar is one or more searches

SM Searches at the LHC, IoP

8 April 2013

Summary and conclusions

- Impressive program of searches!
 - several beyond SM models explored at the LHC as well as signature based searches carried out
 - Looking for the unknown, pretty much everywhere!
 - Strenuous work of analyses teams in all experiments to analyze all data in very short time (< 3 months from end of pp Run I)</p>
 - UK contributions across many areas of research
- Much more expected in the next few months and years, with the Run II at LHC
- ▶ To know more:

```
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
http://lhcb.web.cern.ch/lhcb/lhcb_page/physics_results/recent_lhcb_results/
Default.html
```


Di-lepton: non resonant searches

Dedicated searches for non-resonant signals in dielectron and **dimuon** final states

• Enrichment due to virtual Graviton (ADD model)

• Two possible parameterizations of LO x-section:

• **GRW**: single parameter $\Lambda_{\rm T}$

HLZ: n and $Ms(\Lambda) \simeq MPl(4+n)$, n=N extra

dimensions

CMS-PAS-EXO-12-027 CMS-PAS-EXO-12-031

CI	MS 2012 Preliminary ∫ Lott = 20.6 fb ⁻¹ √≅ =	8 TeV
` 5[⁻ˈ		
		n=3 -
4		_
7		n=4 -
-1		n=5
3		n=6 n=7
-		1
2	HLZ parameterization or 1.3	4
E	Observed Limit	
1	Expected Limit	μ -
F	±2σ expected Limit (I	1=3)
0	3 4 5 6	
2	0 4 0	TeVj

	M _s [TeV]					
Channel	n=2	n=3	n=4	n=5	n=6	n=7
μμ	3.69	4.49	3.77	3.41	3.17	3.00
ee	3.99	4.77	4.01	3.63	3.37	3.19
combined	4.35	4.94	4.15	3.75	3.49	3.30

Dijet Resonance Search below 1 TeV

Data Scouting: ~1kHz

- Novel trigger and data acquisition strategy applied to physics analysis
- Trigger: H_T > 250 GeV
 - Reduced event content:
 - HLT calorimeter jets only
 - no raw data
 - no offline reconstruction
 - Bandwidth (rate x size)
 under control

Data Parking: 300-600 Hz

- looser and new triggers
 - increased range for many analyses
- For the shutdown

Resonant WZ production

- ▶ WZ \rightarrow lllv: trilepton + Missing Transverse Momentum (E_T^{Miss})
 - Resonant diboson production (ZZ,WZ,Zγ,Wγ) taken from MC simulation
 - Reducible background from misidentified leptons (Z+jets, ttbar, Wt) estimated from data
 - Two control regions used to check predictions:

Resonant WZ production: results

No excess observed:

▶ Search for resonant $ZZ \rightarrow llqq$ (l=e, μ)

Use **Bump Hunter** algorithm to test for the presence of a signal. Fit mlljj distribution with smooth background hypothesis:

$$f(m; p_{0,1,2,3}) = p_0 \frac{(1-x)^{p_1}}{x^{p_2+p_3\ln(x)}} \left| x = \begin{cases} m_{uy}/\sqrt{s} \text{ (resolved)} \\ m_{uy}/\sqrt{s} \text{ (merged)} \end{cases} \right|$$

Two signal regions to treat jet-jet overlap

- Resolved: p_T(II)>50GeV
 - Two leading jets: Δφ_{ii}<1.6, 65 < m_{ii} < 115 GeV
- Merged: p_T(II) > 200GeV
 - Leading jet: p_T(j)>200GeV, m_i > 40 GeV

Upper limit on $\sigma(pp->G^*)\times BR(G^*->ZZ)$

Lower limit m_{G*}: 850 GeV @ 95% C.L.

W' in lepton+E_T^{Miss}

- Search for new physics in final states with an electron or a muon and a low mass neutrino
- Additional interpretations:

Limits for contact interactions (HNC model) in the μ +MET channel.

Excludes Λ < 10.9 TeV (13 TeV in electron channel)

95% CL limits on the split-UED parameters μ and 1/R derived from the W' mass limits taking into account the corresponding width of the W^2_KK.

left-handed and right-handed couplings dependence

Cross section for single top production via W' boson for any set of couplings

$$(a^L, a^R)$$

$$\begin{split} \sigma &= \sigma_{SM} + a_{ud}^L a_{tb}^L \left(\sigma_L - \sigma_R - \sigma_{SM} \right) \\ &+ \left(\left(a_{ud}^L a_{tb}^L \right)^2 + \left(a_{ud}^R a_{tb}^R \right)^2 \right) \sigma_R \\ &+ \frac{1}{2} \left(\left(a_{ud}^L a_{tb}^R \right)^2 + \left(a_{ud}^R a_{tb}^L \right)^2 \right) \left(\sigma_{LR} - \sigma_L - \sigma_R \right) \end{split}$$

Assume equal production and decay couplings a_{ud} and a_{tb}

Contour plots of M(W') in the (aL, aR) plane(95% CL limits)

Excited leptons

• l^* in $ll\gamma$, selection similar to Z' analysis with an additional photon

- Use total $ll\gamma$ mass as discriminant:
 - ▶ Electron channel plot similar

Λ = 2.5 TeV	e*	μ*
expected limit (TeV)	2.28	2.13
observed limit (TeV)	2.17	2.13

Search for vector-like T

Search for top partners with charge 5e

Search for pair production of charge 5/3 T, $T \rightarrow Wt$ BR=100%

CMS-B2G-12-012

- Final state signature: same-sign (SS) leptons outside Z mass window + H_T>900 GeV
- Require ≥5 "constituents" in addition to two SS leptons
 - Constituent: lepton, jet, V-tagged jet (2-jets), or top-tagged jet (3-jets)

Reconstruction of the T 5/3 mass can be used to distinguish it from other exotic particles

- •"top-tagging" algorithm based on identifying jet substructure (t→jjj merged in one jet)
- similarly for V-tagged jets = W boson decay products merged in one jet

Exclude 5/3 Top Partners with masses up to 770 GeV (830 GeV expected)

Monojets results as constraints on D

Limit on WIMP pair production cross-section can be transformed into limit on effective WIMP-hadronic contact interaction:

Vector (SI):
$$(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)\cdot\Lambda^{-2}$$

Axial-v. (SD):
$$(\overline{\chi}\gamma_{\mu}\gamma^{5}\chi)(\overline{q}\gamma^{\mu}\gamma^{5}q)\cdot\Lambda^{-2}$$

WIMP-nucleon scattering xsect

$$\sigma \propto \frac{1}{\Lambda^4}$$

SUSY interpretation for Monojet results

- Search for gravitino production in association with squarks or gluinos
- Same signature as WIMP production, but not ISR search (similar to ADD)

In GM SUSY, gravitino LSP with mass related to SUSY breaking scale At LHC with low-scale SUSY breaking, direct $\tilde{G}+q$ or G+gproduction can dominate. Crosssection ~ $1/m^2(G)$

Lower limits on gravitino mass as function of squark/gluino masses

Improves existing limits by O(magnitude)

Sbottom via gluino pair production

- ► Final state contains up to 4 bjets and large E_TMiss
 - Several different analyses developed to target this final state:
 - **ATLAS:** 0 leptons + 3 b-jets, large M effective = E_T^{Miss} + H_T (12.8 fb⁻¹, ATLAS-CONF-2012-145)

Monica D'Onofrio, BSM Searches at the LHC, IoP

Sbottom via gluino pair production

- ▶ Final state contains up to 4 bjets and large E_T^{Miss}
 - Several different analyses developed to target this final state:
 - **ATLAS:** 0 leptons + 3 b-jets, large M effective = E_T^{Miss} + H_T (12.8 fb⁻¹, ATLAS-CONF-2012-145)
 - ► CMS: 0 leptons+ \geq 3 jets (\geq 1 b-jets) + large E_T^{Miss} (19.8 fb⁻¹, CMS-PAS-SUS-12-024)

Strong production: Same Sign leptons

Generic signature sensitive to new physics

Z+jets charge flip, ttbar, W+jets

interpretations

Interpretation in MSUGRA/CMSSM and vast array of RPC/RPV simplified models

MSUGRA /CMSSM

Can accommodate higgs mass ~126 GeV

ATLAS-CONF-2013-007

Direct stop production in Z+b-jets

 $\tilde{t}_2 \bar{\tilde{t}}_2$ production where $\tilde{t}_2 \rightarrow Z \tilde{t}_1$

First time directly addressed at the LHC! probe parameter space with small $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$ Natural gauge mediated SUSY breaking model $\tilde{t} \tilde{t}$ dominant

Inspired by naturalness

cascade decay to $\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$

Signature: 2-3 leptons, Z candidate,

200

150

100

50

300

3, 4 or \geq 5 jets (\geq 1 b-tagged jets) + E_{T}^{miss}

Signal regions **2L** small & large $\wedge m(\tilde{t}_1)$ **Backgrounds** L dt = 20.7 fb⁻¹, \sqrt{s} =8 TeV **Irreducible** VV, VVV, ttbar+V Simplified model \tilde{t}_2, \tilde{t}_2 250 Irreducible 2L, 500

reducible 3L Ttbar, Z+jets

Reducible W+jets, multijets

Strong SUSY production: 1τ, 2τ ATLAS-CONF-2013-026

Gauge Mediated SUSY breaking models Stau is NLSP, prompt decay

where
$$\tilde{\chi}_1^0 \rightarrow \tau \tilde{\tau} \rightarrow \tau \tau \tilde{G}$$

 4τ + jets from cascade decays

or
$$\tilde{\chi}_1^{\pm} \rightarrow v \, \tilde{\tau} \rightarrow v \, \tau \, \tilde{G}$$

 2τ + jets from cascade decays

Signature:

1 or 2 hadronic τ , \geq 2 jets + E_{T}^{miss}

Signal regions: High mT, H_T, Njet requirements

Backgrounds Irreducible Ttbar, W,Z+jets, VV, Drell-Yan Reducible Multijets

Data/MC

Weak SUSY production: 2T

ATLAS Preliminary

 m_{T2} generalised transverse

mass for two visibles

Data 2012 (√s = 8 TeV)

SUSY Ref. Point 1 SUSY Ref. Point 2

L dt $\sim 20.7 \; {
m fb}^{-1}$

OS m_{T2}

Light staus are well motivated in natural SUSY

First search for $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\dagger}$ production with light staus from the LHC

Signature: 2 OS hadronic τ + E_{T}^{miss}

Signal regions: High E_T^{miss} and m_{T2} and (b) jet veto

Reducible W+jets, multijets **Irreducible** Z+jets, VV, ttbar, ttbar+V

Multilepton SUSY: >= 4 lepton search

General gauge mediated SUSY breaking is neutralino NLSP: Z-rich

 $ilde{\chi}^0_1$ Z/H ℓ^{\mp}

RPC $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}$ production

Versatile analysis! Low backgrounds

Signature: \geq 4 leptons (0, 1 hadronic τ) + E_T^{miss}

 $\begin{array}{l} \textit{Signal regions} \\ \textit{High } E_t^{miss}, \\ \textit{Z-rich / Z-depleted} \end{array}$

Backgrounds

Irreducible ZZ, ZWW,

ttbar+Z/WW, higgs

Reducible

Ttbar, Z+jets, WZ

 $\rho \pm$

Monica D'Onofrio, BSM Searches at the LHC, IoP

Multilepton SUSY: >= 4 lepton search

 $\tilde{\chi}_2^0 \, \tilde{\chi}_3^0$

Some of the interpretation in RPC/RPV

CMS Chargino-neutralino summary

Direct stop pair production: O lepton ATLAS CONF 2013-024

Decay of stop depends on SUSY mass spectrum

 $\tilde{t} \ \overline{\tilde{t}}$ production where $\tilde{t} \rightarrow t \ \tilde{\chi}_1^0$

→ Target heavy stop

Events / 50 GeV

Search for fully hadronic decays of the top

Signature: \geq 6 jets (\geq 2 b-tagged jets) + E_T^{miss}

Backgrounds

Semi-leptonic ttbar, Z+jets, multijets

Loose, medium, tight signal regions using E_T miss

ATLAS Preliminary $\int_{L} dt = 20.5 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV}$

0-leptons, SR E_T^{miss}>200 GeV

Direct stop production: 1 lepton

Stop in top+neutralino

medium

Signal regions Loose: low Δ stop,top

tight high-mass high-mass

Stop in b+chargino: $\tilde{t} \rightarrow b \, \tilde{\chi}_1^{\pm} \quad (\tilde{\chi}_1^{\pm} \rightarrow W^{(*)} \, \tilde{\chi}_1^{0})$

Signal

loose mid-mass \tilde{t} , $\tilde{\chi}_1^{\pm}$

regions high-mass \tilde{t} , large $\Delta m(\tilde{t}, \tilde{\chi}_1^{\pm})$ medium, tight

Some (~ 50-70 GeV) dependence on top polarisation

Direct sbottom pair production

Direct sbottom pair production with sbottom in b+neutralino

