Status of SUSY after LHC Run I

Andrew Fowlie

University of Sheffield Supervised by Prof. Roszkowski "BayesFits"et al

Contents...

- 1. SUSY and the CMSSM
- 2. Experimental constraints on SUSY
- 3. Bayesian statistics
- 4. Favoured regions of CMSSM
- 5. Viability & naturalness

Lots of topics => Lots of details and caveats missing...

Flavour of our work...

SUSY Motivation

- Solves hierarchy problem between Planck and EW scales (stabilises Higgs sector). Radiative top loops cancel with new stop loops
- Lightest neutralino (if lightest SUSY particle) is a WIMP; explains dark matter
- Predicts light Higgs at $\lesssim 130$ GeV
- Unification of gauge couplings (by extended Higgs sector)
- "Predicts" heavy top quark (big Yukawa required for REWSB)
- Explains anomalous magnetic moment of muon, by neutralino/smuon or chargino/muon-sneutrino loops

Summary of CMSSM

- SUSY is broken. General breaking MSSM has
 ~> 100 free parameters
- CMSSM: Four free continuous parameters at GUT:

$$m_0$$
 = universal soft scalar mass

$$m_{1/2}$$
 = universal soft gaugino mass

$$A_0$$
 = universa soft trilinear

$$\tan \beta$$
 = the ratio of the two Higgs vevs

Also looking at pheno pMSSM with 8 params at SUSY scale

Neutralino-1:

$$m_{\chi} = 0.4 m_{1/2}$$

Neutralino-2:

$$m_{\chi} = 0.8 m_{1/2}$$

Gluino:

$$m_{\tilde{g}} = 2.7 m_{1/2}$$

Stau-1:

$$m_{\tilde{\tau}} = \sqrt{0.15m_{1/2}^2 + m_0^2}$$

Bayesian statistics

- Consider posterior probability probability density of the CMSSM's parameter space given the experimental data
- cf. frequentist statistics (e.g. chi^2) probability of data given the theory
- Posterior proportional to likelihood times prior (Bayes' theorem):

$$p(p_1, p_2, \dots | D) = \mathcal{L}(D|p_1, p_2, \dots) \times \pi(p_1, p_2, \dots)$$

Likelihood contains experimental information, often Gaussian:

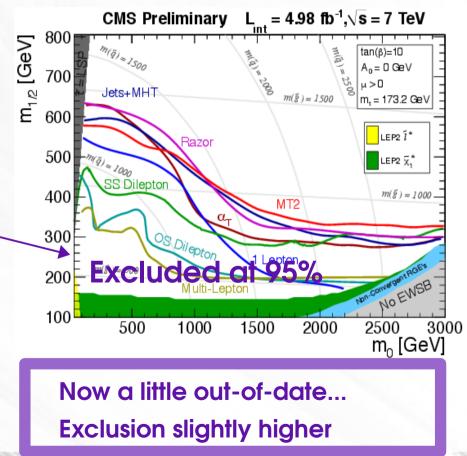
$$\mathcal{L} = \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

- Prior contains belief in parameter space before seeing data
- Bayesian stats is a calculus for beliefs —won't tell us what our prior beliefs ought to be, but how to update them once we see experiments

Experimental constraints...

Theory error now > exp't

SUSY constrained by:

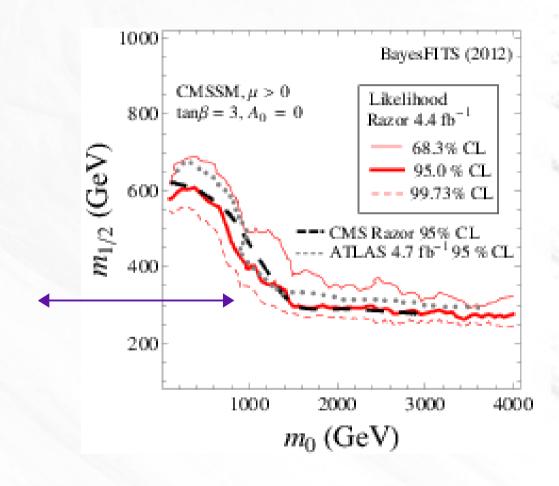

- Direct searches
- Higgs mass
- Dark matter
- EWPO ◆
- g-2 anomaly ◀
- B-physics
- Perhaps also non-SM Higgs rates...

Measurement	Mean	Error: Exp., Th.	Likelihood
CMS razor 4.4/fb	Explained later		Poisson
m_h (GEV)	125	2, 2	Gaussian
$\Omega_{\chi}h^2$	0.1120	0.0056, 10%	Gaussian
$\sin heta_{ m eff}$	0.23116	0.00013, 0.00015	Gaussian
$m_W(\text{GeV})$	80.399	0.023, 0.015	Gaussian
$\delta (g-2)_{\mu}^{\rm SUSY} \times 10^{10}$	28.7	8.0, 1.0	Gaussian
${ m BR}(\overline{ m B} o { m X_s}\gamma) { imes} 10^4$	3.60	0.23, 0.21	Gaussian
${\rm BR}({\rm B_u} o au u) imes 10^4$	1.66	0.66, 0.38	Gaussian
$\Delta M_{B_s}(\text{GeV})$	17.77	0.12, 2.40	Gaussian
BR (B _s $\rightarrow \mu^+\mu^-$)	$< 4.5 \times 10^{-9}$	0, 14%	Error Fn.

Updated to LHCb measurement in recent BayesFits papers

Including direct LHC SUSY searches

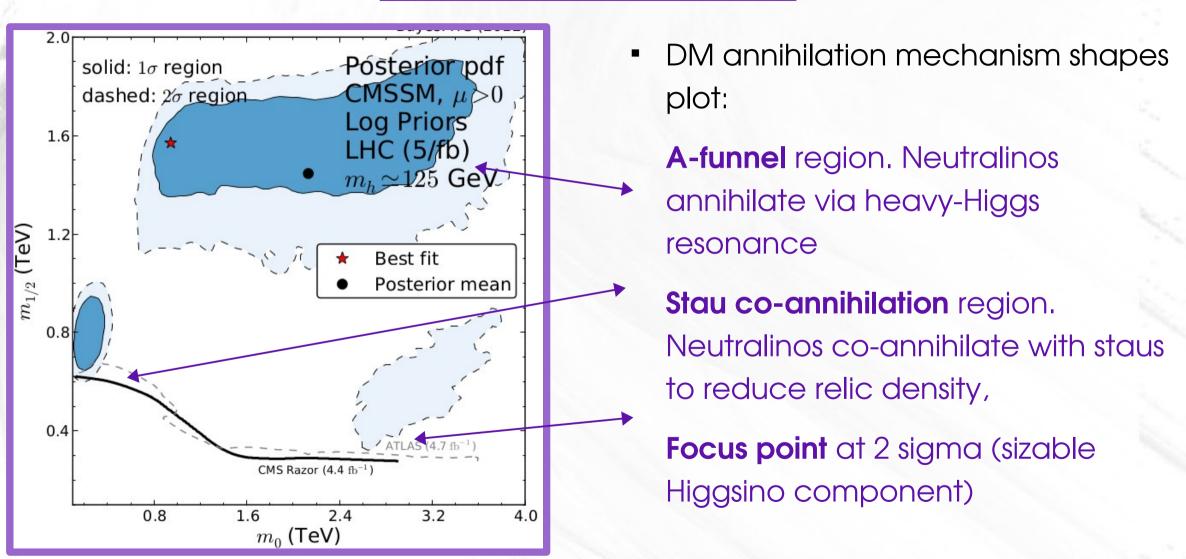
- Signature jets and missing energy, from cascade decay of heavy coloured sparticle, with 2 neutralinos in final state
- No statistically significant excess of events. Takes a large bite out of CMSSM
- We simulated expected SUSY events by MC, including detector efficiency and acceptance, across the m0, m12 plane of the CMSSM

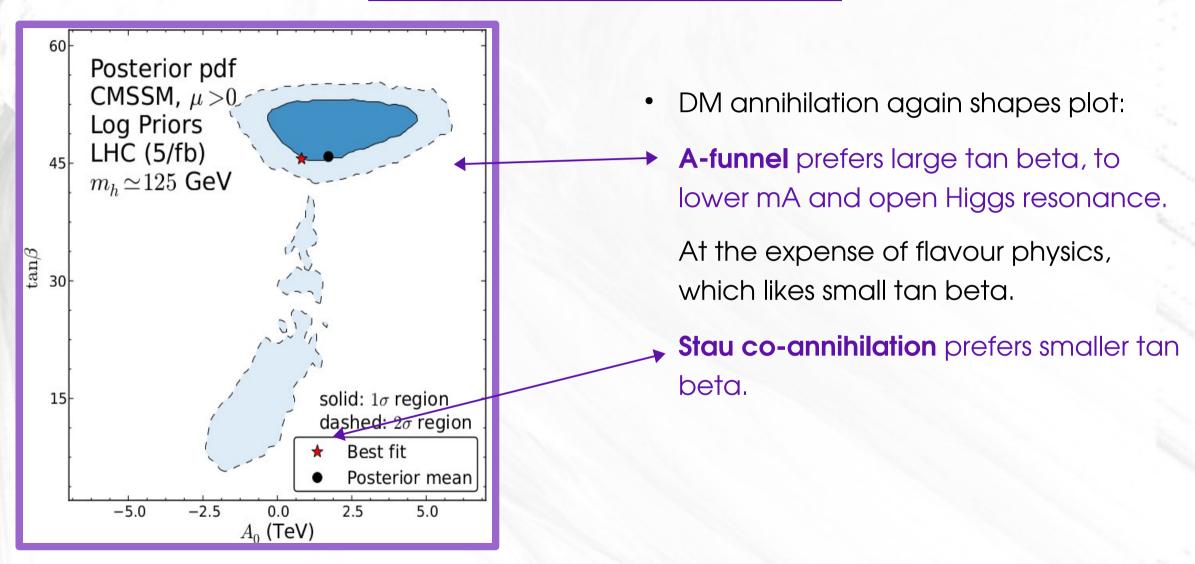


Likelihood from LHC SUSY search

 Calculated our likelihood with a Poisson, plus systematics on background predictions

$$\mathcal{L} = \text{Po}(o|s+b) \times \text{Syst}(b'|b)$$


- Official likelihood not published
- Our 95% exclusion contour agrees well with official result for CMSSM (m0, m12); this validates method
- We can re-interpret SUSY searches in ANY model! Including ph'cal pMSSM, NMSSM etc


Results...

- Scan parameter space with MultiNest MC algorithm
- Now present results as 68% and 95% two-dimensional "credible regions"
- These regions contain 68% and 95% of the posterior pdf
- Reflect degree of belief
- But don't indicate any (frequentist) coverage (cf. Confidence interval)
- We choose non-informative log or flat priors for the CMSSM parameters (no "correct" choice, but some choices are bad...)
- Prior dependence <=> weak"data

Results (m0, m12)

Results (A0, tan beta)

"Viability"

- Frequentist: Find minimum chi-squared => find the probability of obtaining a chi-squared that large (p-value)
- If less than, e.g., 5%, reject model
- Problem: don't know the distribution of the chi-squared, so guess?!
- Problem: frequentist quantities are properties of experiment
- "Let data speak for itself?! <=> frequentist statistics properties
 of hypothetical, unrealised experiments information that is
 NOT in data
- We (+fivals) so far find CMSSM p-value>5 %, even with g-2, we are making a (sensible) guess for chi-squared dist'n

"Viability"

Bayesian: find probability of model given the data!

$$p(M|D) = p(D|M)p(M)/p(D) \propto \mathcal{Z}$$

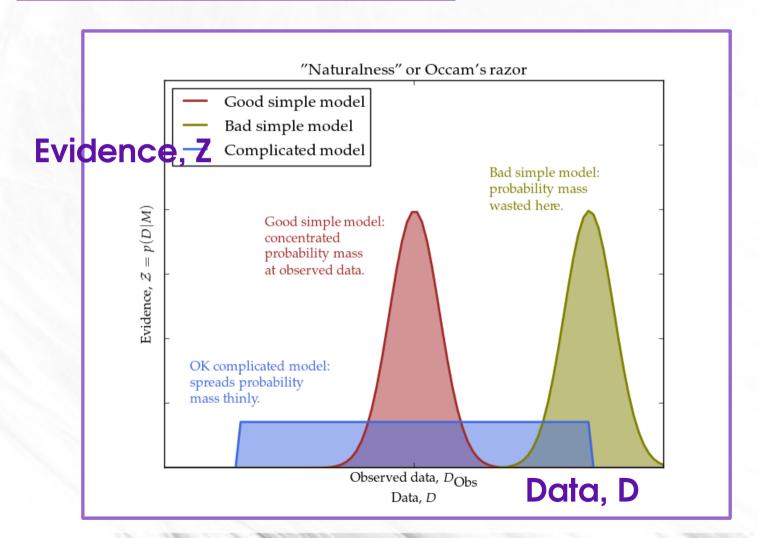
- Problem: don't know normalisation p(D) or prior for model p(M), so compare evidence Z=P(D | M) with a reference model, and these factors cancel
- If evidence of, e.g., CMSSM much less than reference model (e.g. SM augmented with DM candidate?!), reject model
- e.g. if $\mathcal{Z}(M1)/\mathcal{Z}(M2)$ > critical value, model 1 is significantly favoured over model 2
- Common interpretation is Jeffreys scale
- This is ongoing...

Naturalness

- Naturalness fine-tuning of EW scale wrt SUSY parameters.
 - Barbieri & Giudice measure:

$$\Delta = \max_i \frac{p_i}{M_Z} \frac{\partial M_Z}{\partial p_i}$$

- Failed SUSY searches => large radiative corrections to EW scale
 => "unnatural"
- Naturalness is a statistical argument (Strumia '99)- formalised by Bayesian stats. Bayesian evidence measures naturalness:


$$\mathcal{Z} = p(D|M) = \int \mathcal{L}(D|p_1, p_2, \ldots) \pi(p_1, p_2, \ldots) dp_1 dp_2 \ldots$$

BIG CAVEAT: "CMSSM" $b, \mu \mapsto \tan \beta, M_Z$ To measure naturalness wrt MZ, need fair "priors in rather than $\pi(M_Z) = \delta(M_Z - 91.18\dots)$

- Naturalness –
 Ill-defined?
 Aesthetic
 principle? No!
 Statistical
 argument,
 formalised with
- Links with
 Occam's razor &
 falsifiability Hots
 of insights

Bayesian stat.

Naturalness (cont.)

Summary

- 1. Have powerful statistical tools to explore rich parameter space.
- 2. Even simplest CMSSM viable
- 3. Though mass scales now high
- 4. Typical masses: neutralino ~ 0.5 TeV, squarks & gluinos ~ 3 TeV.
- 5. Naturalness formalised with Bayesian stats

Lots of topics => Lots of details and caveats missing...

Search Fowlie or Roszkowski on arXiv for full picture