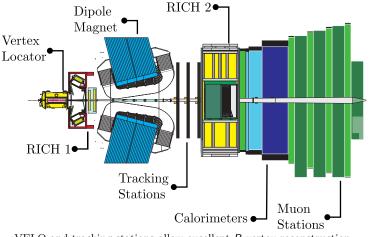
Measurement of Polarisation Amplitudes and Phases in the decay $B^0 \rightarrow \phi K^*(892)^0$ at LHCb

Dean Lambert

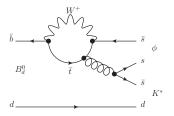
IOP Meeting 2013

April 9



- The LHCb Detector
- Analysis Motivation
 - Why do we study $B^0 \rightarrow \phi K^*(892)^0$?
 - What do we measure?
 - How do we make these measurements?
- Experimental Challenges
- Expected Precision

The LHCb Detector


VELO and tracking stations allow excellent B vertex reconstruction. Accurate particle identification from RICH detectors.

Analysis Motivation - Why

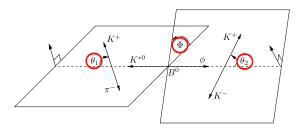
Why Study $B^0 \rightarrow \phi K^* (892)^0$

- This decay involves a **flavour-changing neutral-current**, which is forbidden at tree level in the Standard Model. Therefore it must proceed via a **penguin diagram**.
- Loops can hide particles from beyond the Standard Model.

"Polarisation Puzzle"

- Due to V-A nature of the weak interaction, naively expect $f_L \gg f_T$.
- Experimentally confirmed by the B-factories in tree dominated processes e.g. $B_d^0 \to \rho^+ \rho^-.$
- However in decays such as $B_d^0 \to \phi K^*(892)^0$ it was found $f_L \approx f_T$.
- This is sometimes known as the "polarisation puzzle."

$$f_L = \frac{|A_0|^2}{|A_0|^2 + |A_{\perp}|^2 + |A_{\parallel}|^2}, f_T = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\perp}|^2 + |A_{\parallel}|^2}.$$


These terms explained in the next slide!

Analysis Motivation - What

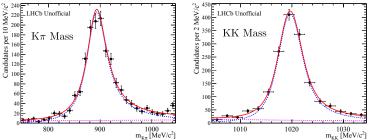
What We Measure

• The direct **CP asymmetry** in the polarisation amplitudes and strong phase differences.

- P→VV decay, spin 0 B-meson decays to two particles of spin 1.
- Therefore there are 3 possible **spin configurations** allowed by conservation of orbital angular momentum.
- These correspond to 3 linear **polarisation amplitudes**, $A_0, A_{\perp}, A_{\parallel}$.

Analysis Motivation - How

How

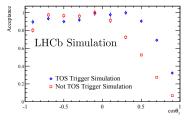

- Study decays of $B^0 \to \phi(\to K^+K^-)K^*(\to K^+\pi^-)$.
- Analysis of m_{KK} , $m_{K\pi}$ and decay angles $(\cos \theta_1, \cos \theta_2, \Phi)$ used to measure polarisation amplitudes and phases.

$$\Gamma(B^{0} \to \phi K^{*}(892)^{0}) \simeq \int \sum_{i=1}^{15} F(m_{K\pi}, m_{KK}) K_{i}(t) f_{i}(\cos \theta_{1}, \cos \theta_{2}, \Phi) M_{i}(m_{K\pi}, m_{KK}) dt$$

- **F**($m_{K\pi}, m_{KK}$) is 4-body phase space factor.
- K are the complex amplitudes.
- $f(\cos \theta_1, \cos \theta_2, \Phi)$ are the angular terms.
- $M(m_{K\pi}, m_{KK})$ are the mass terms.

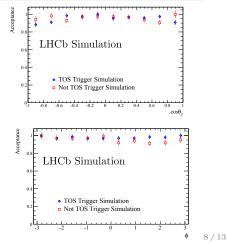
Everything is convolved with a Gaussian resolution.

Full differential decay rate is in backup slides.


Left: Background subtracted $K\pi$ invariant mass. Right: Background subtracted KK invariant mass. Blue is the p-wave, green is the s-wave and red is the total.

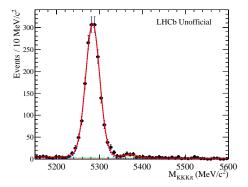
S-wave

It is possible for the decays $B^0 \to \phi K \pi$ or $B^0 \to K^*(892)KK$ to occur. In these cases the KK or $K\pi$ are **not** spin-1 states. These states **do not** help us to measure the polarisation amplitudes $A_0, A_{\perp}, A_{\parallel}$. They are accounted for in the fit and have their own amplitudes A_s^{KK} and $A_s^{K\pi}$.


Angular Acceptance

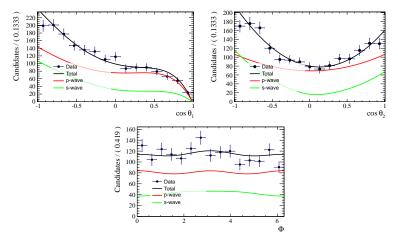
Due to slow pion, acceptance drops off as $\cos \theta_1 \rightarrow 1$. Corrections are applied to the fit to account for this effect.

Acceptance is significantly different if the event is triggered by one of the particles in the $B^0 \rightarrow \phi K^* (892)^0$ final state (TOS) than if it is triggered by something else (Not TOS).


We apply separate corrections to each of these cases.

Data Sample - Mass Distribution

Analysis uses 1fb^{-1} of data collected in 2011 by LHCb.



- $N_{sig} = 1710 \pm 43$
- $N_{bkg} = 176 \pm 18$
- $N_{Bs} = 43 \pm 9$
- $\sigma = 16.1 \pm 0.4 \text{ MeV}$

Signal shape is modelled by a Crystal Ball function and a Gaussian function, the B_s^0 is also fitted with this shape. The combinatorial background is modelled by an exponential function.

Data Sample - Angular Distributions

Background subtracted angular distributions. Red is p-wave, green is s-wave and black is total. The large acceptance effect can be seen in the $\cos \theta_1$ angle.

P-wave Parameters	LHCb Result	BaBar Result [*]
$ A_{\perp} ^2$	$xxx \pm 0.017$	0.212 ± 0.032
$ A_0 ^2$	$xxx \pm 0.019$	0.494 ± 0.034
δ_{\parallel}	$xxx \pm 0.065$	2.40 ± 0.13
δ_{\perp}	$xxx \pm 0.060$	2.35 ± 0.13
S-wave Parameters		
$ A_{s(K\pi)} ^2$	$xxx \pm 0.013$	-
$ A_{s(KK)} ^2$	$xxx \pm 0.012$	-
$\delta_{s(K\pi)}$	$xxx \pm 0.057$	2.82 ± 0.15
$\delta_{s(KK)}$	$xxx \pm 0.073$	-

Comparison of **statistical** uncertainty on fit parameters between LHCb and BaBar results.

* Time-dependent and time-integrated angular analysis of $B \to \phi K_s^0 \pi^0 and \phi K^\pm \pi^\mp.$

PRD 78, 092008 (2008). http://arxiv.org/abs/0808.3586.

Systematics on Angular Fit

- Uncertainty on angular acceptance correction.
- S-wave parameterisation in mass fit.
- \blacksquare Vary lines hapes for $M_{KKK\pi}$ fit, which is used to background subtract fit.
- Difference in shape of kinematic variables in data and MC.

Conclusion

Conclusion

- Selection allows good background rejection, signal to background ratio ~10.
- Roughly four times as many signal events as previous largest single sample.
 Expect to half statistical uncertainty on measurements of amplitudes.
 Includes s-wave under φ meson, not done in previous measurements.
 Good understanding of LHCb detector geometry and signal selection.
- Two times more data has been collected during 2012, could improve precision more!

END.

Angle and Mass dependent PDF

 $\frac{d^5\Gamma}{d\cos\theta_1 d\cos\theta_2 d\Phi dm_{KK} dm_{K\pi}}$

$$\begin{aligned} \frac{1}{|K\pi|} &= \frac{9}{8\pi} (q_B q_{K*} q_{\phi})^2 \left| \left(A_0 \cos \theta_1 \cos \theta_2 \right. \\ &+ \frac{A_{\parallel}}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \cos \Phi \\ &+ i \frac{A_{\perp}}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \sin \Phi \right) M_1(K\pi) M_1(KK) \\ &+ \frac{A_s^{K\pi}}{\sqrt{3}} \cos \theta_1 M_1(KK) M_0(K\pi) \\ &+ \frac{A_s^{KK}}{\sqrt{3}} \cos \theta_2 M_1(K\pi) M_0(KK) \right|^2. \end{aligned}$$

$$\begin{aligned} q_A &= \frac{\sqrt{(m_A^2 - (m_a + m_b)^2)(m_A^2 - (m_a - m_b)^2)}}{2m_A} \end{aligned}$$

Where m_A is the mass of 'A' and $m_{a,b}$ are the masses of the daughters of 'A'. M_1 is described by a spin-1 relativistic Breit-Wigner. $M_0(KK)$ is a Flatté distribution and $M_0(K\pi)$ is the LASS parameterisation of non-resonant $K\pi$ and $K^*(1430)^0$.

This entire PDF is then convolved with a Gaussian function.

Parameter	Edinburgh Fit	Santiago Fit
$ A_{\perp} ^2$	0.251 ± 0.016	0.251 ± 0.016
$ A_0 ^2$	0.457 ± 0.018	0.457 ± 0.018
$ A_{s(K\pi)} ^2$	0.148 ± 0.013	0.148 ± 0.013
$ A_{s(KK)} ^2$	0.113 ± 0.011	0.113 ± 0.011
δ_{\parallel}	2.600 ± 0.061	2.600 ± 0.061
δ_{\perp}	2.668 ± 0.058	2.667 ± 0.058
$\delta_{s(K\pi)}$	2.227 ± 0.059	2.227 ± 0.059
$\delta_{s(KK)}$	2.519 ± 0.068	2.518 ± 0.068

Table: Comparison of Edinburgh and Santiago fit results using thesame nTuple. Not a definitive fit, just for comparison.