^AUCL

Boosted Hadronically Decaying W and Z bosons

Becky Chislett

IoP conference 9th April 2013

Aim: To measure the production cross section of a boosted, hadronically decaying W/Z boson and use this peak to study the effect of various grooming and substructure techniques

- Reconstructing hadronic decays at the LHC is difficult due to the large backgrounds \rightarrow Look at high p_{T} where this background rapidly drops off
- Many beyond the standard model theories predict new particles with TeV masses which can decay into W/Z bosons

Expect to see boosted (high p_T) W/Z bosons

 Reconstructing the known W/Z resonance is an important step in developing these boosted techniques

• The observation of this peak provides a standard candle to study the effects of techniques to remove pileup and the underlying event

 \rightarrow Offers a way to control the jet mass in pileup conditions

Particularly important as the levels of pileup increase

Event Selection

Look for events where the decay products of the W/Z are contained with in a single jet.

rule of thumb: separation between decay products: $R \sim 2m_x/p_{xT}$

The QCD background is a couple of orders of magnitude higher than the signal…

Look at the distribution of energy in the jet

Look at Anti-k_T R=0.6 jets, $p_T > 320$ GeV

LUCL

Boost the jet back into its centre of mass frame, we expect:

- W/Z jet to have a back to back topology
- QCD jet to be more isotropic

Use jet shapes to distinguish signal from background **Sphericity, Aplanarity, Minor Thrust**

Jet Shape Variables

LUCL

Minor Thrust

A measure of how much

of the momentum lies on

the axis minimising the

longitudinal momentum

Sphericity

A measure of how well the event lies on a single axis

Jets / 0.04 Jets / 0.04 1 Jets / 0.02 Jets / 0.02 0.5 **ATLAS** Work in progress **Witch ATLAS** Work in progress Multi-Jet 0.14 \leftarrow **ATLAS** Work in progress with Mult \sqrt{s} = 7 TeV \sqrt{s} = 7 TeV $rac{6}{9}$ _{0.12} \sqrt{s} = 7 TeV W/Z Jet W/Z Jet 0.8 W/Z Jet 0.4 Ldt = 4.7 fb⁻¹
_ > 320 GeV lnl < 1.9 \int Ldt = 4.7 fb⁻¹
p₋ > 320 GeV ln| < 1.9 • Data 2011 • Data 2011 Ldt = 4.7 fb["]
0 -> ²²⁰ GoV bl $2a₁$ 0.1 0.6 t, > 320 GeV |d| < 1.9 \mathbf{r}_{T} , which exists the state \mathbf{r}_{T} 0.3 $\frac{1}{2}$ > 320 GeV |d| < 1.9 0.08 0.4 0.06 $0.2 0.04$ 0.2 0.1 0.02 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 Aplanarity Thrust Min **Sphericity** Highly directional events: $S, A, T \longrightarrow 0$ W/Z QCD Isotropic events: $S, A, T \longrightarrow 1$ 4

Aplanarity A measure of how well the event is contained within a plane

Extracting the Cross Section

Combine the variables into a likelihood and cut on this: LH > 0.15 Reject ~90% background, keep ~55% signal

The resulting mass distribution:

LUCL

Work is in progress to perform a fit and extract the signal yield and hence perform a cross section measurement.

5

Jet Grooming and Substructure

Take this peak and consider the effect of applying various grooming and substructure techniques:

- • **Pruning**
- • **Trimming**
- • **Area Subtraction**
- • **Splitting/Filtering**

Pileup: background from additional and the contract of the con proton-proton interactions.

Three main questions – does applying grooming:

> **Improve the agreement between data and MC?**

Improve the s/b that can be achieved? Help decrease the pileup dependence?

Pruning

Grooming techniques aim to remove the parts of the jet coming from pileup and the underlying event and leave only the hard structure

S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Phys.Rev. **D81 (2010)**

Recluster the jet (using the k_T or C/A algorithm). Remove constituents that are

\n- Wide angle:
$$
\Delta R_{j_1, j_2} > R_{cut}
$$
\n- Soft: $\frac{p_T^{j_2}}{p_T^{j_1 + j_2}} < z_{cut}$
\n

Consider $R_{\text{cut}} = 0.3$, $Z_{\text{cut}} = 0.05$

 0^\sqcup_0

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CoM Aplanarity

Pruned variables

 Ω

 0.1

THE REPORT

 0.4

 0.5

 0.6

 0.7

 0.8

 $\overline{0.9}$

CoM Sphericity

 $0.2 \quad 0.3$

8

Pruned variables

^{*}UCL

Look how data compares with other MCs:

Generally better agreement, particularly for low values of sphericity across all MCs, except Herwig

Pruned mass

Form a likelihood discriminator from these three pruned variables:

Cut such that 90% of the background is rejected (for comparison to the default)

Signal peak shifted to lower mass **Better agreement between data and MC** 10

^{*}UCL

Pruned Jets

 $R_{\text{out}} = 0.3$ $z_{cut} = 0.05$

normalised to 1

0.07

 0.06

 0.05

 0.04

ATLAS Work in progress

 $>$ 320 GeV ml < 1.9 signal (W/Z)

background (QCD+tt

 \sqrt{s} = 7 TeV

 \int Ldt = 4.7 fb

Pruning – pileup dependence

Pileup is the contribution from other proton-proton interactions

assess by looking at the distribution as a function of the number of vertices

Pileup dependence much reduced

Pileup dependence

Summary for all the grooming/substructure techniques studied:

Compare the ratio between low and high numbers of vertices for each technique

Grooming in general reduces the pileup dependence, except in the case of splitting/filtering

Is the s/b improved?

Look at the s/b as a function of the jet mass:

Improvement in s/b, particularly in the case of trimming and splitting and filtering

• The production cross section for a boosted hadronically decaying W/Z boson is in progress.

• The impact of various grooming techniques (Pruning, Trimming, Area Subtraction, Splitting/filtering) were studied using this peak. In general:

- Grooming improves the agreement between data and MC
- An improvement in the s/b can be made
- Pileup dependence is reduced

• Grooming techniques look promising for controlling the jet mass in future analyses, especially as pileup become more important.

Trimming

LUCL

Recluster the jet using the k_T *algorithm with a smaller radius* R_{sub} *and remove any subjets with p_Tsubjet/p_T^{jet} < f_{cut}*

 k_t _, R=R_{sub} \bigcap ∩ \bigcirc Consider $R_{sub} = 0.2$, $f_{cut} = 0.03$ 69 \circ \bigcirc $p_T^i/p_T^{\text{jet}} < f_{\text{cut}}$ Initial jet **Trimmed** jet

Look at the variables using the trimmed constituents:

 good signal/background discrimination better agreement between MC and data w.r.t before grooming

16

Trimming

Form a likelihood discriminator from these three trimmed variables:

Cut such that 90% of the background is rejected (for comparison to the default)

Background slight distorted Signal peak shifted to lower mass **Better agreement between data and MC**

101

Look at variation with number of vertices: **Pileup dependence slightly improved**

Area Subtraction

LUCL

Calculate the average level of the background in an event (ρ *= median (* $p_{T,j}/A_j$ *)) and* ${\bf subtract}$ this from the hard jets based on their area $({\bm p}_{\mathcal{T},j}^{\;({\sf sub})}$ = ${\bm p}_{\mathcal{T},j}^{\;}$ - ${\bm A}_j^{\;} \rho$ ${\bm j}$

> Where A_j is the area of a jet calculated by adding a uniform background of ghost particles and reclustering.The area of a jet is proportional to the number of ghosts it contains

Very good agreement between data and MC No distortion to the background **Pileup dependence reduced a lot**

CA split/filtering

 * UCL *

Look for hard structure in a jet by

- Undoing the last clustering step in a C/A jet
- Require a sufficient mass drop and symmetric splitting
- Recluster with a smaller radius keeping the largest 3 subjets

Look at applying splitting/filtering procedure to the jets selected by the default analysis:

CA_mass

Filtering Technique

LUCL

The filtering technique (BDRS, Phys. Rev. Lett. 100:242001,2008)**:**

- 1. Undo the last clustering step : jet *j* \longrightarrow subjets j_1, j_2 with mass $m_{j1} > m_{j2}$ Require: $\delta R_{j1..j2} = \sqrt{\delta y_{j1,j2}^2 + \delta \phi_{j1,j2}^2} > R_{split}$
- 2. If this has mass drop: $\frac{m_{j1}}{2}$ and fairly symmetric splitting: $\frac{1}{2}$ *m ^j*¹ *m ^j* $y_2 = \frac{\min(p_{ij1}^2, p_{ij2}^2)}{p_2^2}$ m_j^2 $\frac{\partial P_{ij}^2}{\partial \theta_1} \frac{\partial R_{j1,j2}^2}{\partial t_1} > y_{2,\text{cut}}$

continue, otherwise set $\,j=j_I^{}\,$ and go back to 1

 $j = \sum s_i$ *i*=1 Σ

min(*n*, 3)

- 3. Recluster *j* with Cambridge Aachen radius $R_{\text{filt}} = \min(R_{\min}, \delta R_{j1,j2}/2)$
- 4. Redefine *j* as the sum of the subjets s_i

Pruning

Consider the effect pruning has on the mass distribution using the ungroomed LH:

)
ගී 16000 GeV 9000 Signal (W/Z) Signal (W/Z) $\frac{2}{2}$ 14000
 $\frac{2}{5}$ 12000 Events / 2 8000 + Background (QCD+tt) $\overline{+}$ Background (QCD+tt) 7000 $+$ Data \rightarrow Data 6000 10000 **Pruned Jets Pruned Jets** 5000 $R_{cut} = 0.3$ $R_{cut} = 0.3$ 8000 $z_{\text{cut}} = 0.05$ 4000 $z_{cut} = 0.05$ **ATLAS** Work in progress \sqrt{s} = 7 TeV 6000 **ATLAS** Work in progress 3000 \sqrt{s} = 7 TeV \int Ldt = 4.7 fb⁻¹ 4000 $\int L dt = 4.7$ fb⁻¹ 2000 $p_r > 320$ GeV $lnl < 1.9$ $p_r > 320$ GeV $lnl < 1.9$ 2000 1000 90 130 140 `50 80 100 110 120 $15($ 130 140 150 60 70 60 70 80 90 100 110 120 Jet Mass [GeV] Jet Mass [GeV] Events / 2 GeV Signal (W/Z) 25000 Background (QCD+tt) \leftarrow Data Pruning has a large effect on the background 20000 Anti-k-Jets shape, due to: 15000 • the p_T cut **ATLAS** Work in progress $10000 +$ \sqrt{s} = 7 TeV • the choice of jet radius $\int L dt = 4.7$ fb⁻¹ 5000 $p_{-} > 320$ GeV $lnl < 1.9$ 21 90 100 110 120 130 140 150 60 70 80

Default LH cut > 0.16 Tighter LH cut > 0.25 (reject 95% background)

 * UCL

Pileup dependence

Investigate how much the mass is affected by
pileup by looking at the mass as a function of $\frac{2}{5}$ o.c.
the number of primary vertices:
 $\frac{2}{5}$ o.c.
 $\frac{2}{5}$ o.c. pileup by looking at the mass as a function of the number of primary vertices:

Pileup dependence

* UCL

Investigate how much the mass is affected by
pileup by looking at the mass as a function of
the number of primary vertices:
 $\frac{1}{2}$ 0.07
 $\frac{1}{2}$ 0.07 pileup by looking at the mass as a function of the number of primary vertices:

Pileup dependence much reduced by area subtraction

Sphericity is defined as:
$$
S = \frac{3}{2}(\lambda_2 + \lambda_3)
$$

where λ_3 is the largest eigenvector of the sphericity tensor:

 $S^{\alpha\beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} p_i^{\beta}}$ \sum_i $|\underline{p}_i|^2$

 4 UCL

Isotropic events : sphericity \longrightarrow 1 Highly directional events: sphericity $\rightarrow 0$

Thrust:

$$
T = \frac{\sum_{i} |\hat{T} \cdot p_{i}|}{\sum_{i} |\underline{p_{i}}|}
$$

where the major (minor) thrust axis, T, is the direction which maximises (minimises) the sum of the longitudinal momenta of particles

Directional event: $T_{\text{major}} \rightarrow 1, T_{\text{minor}} \rightarrow 0$ Isotropic event: $T_{\text{major}} \rightarrow 0, T_{\text{minor}} \rightarrow 1$

 $A = \frac{3}{2}$

2

Aplanarity is defined as: $A = \frac{1}{2}\lambda_3$

 S^{AB} where λ_3 is the largest eigenvector of the sphericity tensor: $S^{\alpha\beta} = \frac{\sum_i p_i^{\alpha}}{\sum_i p_i^{\beta}}$

Isotropic events : aplanarity \longrightarrow 1 Planar events: aplanarity $\rightarrow 0$

$$
=\frac{\sum_{i}p_{i}^{\alpha}p_{i}^{\beta}}{\sum_{i}|\underline{p}_{i}|^{2}}
$$