

$\Delta A_{CP} \text{ in } \Lambda_c \rightarrow ph^+h^$ at LHCb

Alex Pearce

University of Southampton/Rutherford Appleton Laboratory

Contents

- CP Violation in Charm
- Origins of CPV
- The LHCb Detector
- Analysis Overview
- ΔA_{CP}
- 2011 Selection
 - Efficiencies
 - Relative Branching Fractions
- Back to ΔA_{CP}
- Phase Space Considerations
- Using Λ_c Resonances
- Conclusions

CP Violation in Charm

- Large interest in charm sector CP violation (CPV), mostly D^0 decays, all mesons
 - Mixing, direct in ΔA_{CP} and indirect in A_{Γ}
- Significant deviations from SM could mean new physics
- Good agreement with SM constrain other models

- Current world average consistent with no CPV at $2\%~{\rm CL}$

- Weak phase from CKM matrix can lead to interference in Feynman diagrams and non-zero cancellation of matrix elements, i.e. CPV
- A singly Cabibbo-suppressed (SCS) vertex provides a possible source of CP violation this way:

- SM still doesn't predict our existence, must be undiscovered CPV somewhere
- Charm CPV predictions very small; O(1%) effect could be new physics

The LHCb Detector

- or a l f co co i di 17
- 853 members from 63 institutes in 17 counties
- Excellent vertex resolution and particle identification
- Triggering reduces LHC rate of 40 MHz to 3 kHz for storage
- Largest charm yields in the world

Alex Pearce (Southampton/RAL)

 ΔA_{CP} in $\Lambda_c \to ph^+h^-$ at LHCb

Analysis

• 3 Λ_c decays: SCS pKK and $p\pi\pi$ for CP measurement, Cabibbo-favoured $pK^-\pi^+$ as control mode

$$\Lambda_b^0 \to \Lambda_c^+ \mu^- X, \quad \Lambda_c^+ \to ph^+ h^-, \quad h \in [K, \pi]$$

- Measure relative branching fractions of the SCS modes to CF
- Pros and cons compared to D^0 analyses
 - ✓ Double tagging, no lifetime dependance (no indirect CPV)
 - \times 5D phase space, due to spin, adds complexity
- Full 2011 & 2012 dataset (3 fb⁻¹)

• Given no CP violation, the difference of branching fractions between matter and antimatter modes would be zero, measure of the deviation is A_{CP}

$$A_{CP}^{\Lambda_c}(h) = \frac{\Gamma(\Lambda_c^+ \to ph^+h^-) - \Gamma(\Lambda_c^- \to \bar{p}h^+h^-)}{\Gamma(\Lambda_c^+ \to ph^+h^-) + \Gamma(\Lambda_c^- \to \bar{p}h^+h^-)}$$

• What's measured is the matter and antimatter yields, tagged by the proton/muon charge; but contaminated by 'background' asymmetries

$$A_{\text{Raw}}^{\Lambda_{c}}(h) = \frac{N(\Lambda_{c}^{+} \to ph^{+}h^{-}) - N(\Lambda_{c}^{-} \to \bar{p}h^{+}h^{-})}{N(\Lambda_{c}^{+} \to ph^{+}h^{-}) + N(\Lambda_{c}^{-} \to \bar{p}h^{+}h^{-})}$$
$$= A_{CP}^{\Lambda_{c}}(h) + A_{P}^{\Lambda_{b}}(h) + A_{D}^{p}(h) + A_{D}^{\mu}(h) + \mathcal{O}(A^{3})$$

• Tricky to measure A_P and A_D , but if these background asymmetries are modeindependent can take the difference to leave pure physics

$$\Delta A_{CP}^{\Lambda_c} = A_{\text{Raw}}^{\Lambda_c}(K) - A_{\text{Raw}}^{\Lambda_c}(\pi) \approx A_{CP}^{\Lambda_c}(K) - A_{CP}^{\Lambda_c}(\pi)$$

• Clean selection to prevent asymmetries from other processes

Alex Pearce (Southampton/RAL)

2011 Selection

- Per-mode selections consist of a multivariate algorithm (boosted decision tree) and tight particle identification (PID) requirements
- Kinematics vetoes imposed, in p and $\eta,$ to improve PID performance
- Misidentifications checked, e.g. $D_s \to KKK$, by testing wrong mass hypothesis, no peaking backgrounds found

- Raw yields extracted from unbinned fits to Λ_c mass; double Gaussian signal, exponential background
- Efficiencies must be calculated to know the production yield

• Efficiencies compensate for detector and selection imperfections

- We don't detect every produced signal decay
- Cuts reduce background at the cost of signal
- True production yields calculable with efficiencies

 $N_{\text{Raw}} = N_{\text{Produced}} \times \epsilon_{\text{Selection}} \epsilon_{\text{Detector}}$

- MVA, PID, tracking, and veto efficiencies from data
- Stripping, trigger, reconstruction, and acceptance from full LHCb simulation

		\mathcal{E} Selection (%)	\mathcal{E} Detector (%)
pK^+K^-	Magnet Up	3.752 ± 0.278	4.120 ± 0.017
	Magnet Down	3.305 ± 0.179	3.305 ± 0.017
$p\pi^+\pi^-$	Magnet Up	2.663 ± 0.083	3.651 ± 0.015
	Magnet Down	2.631 ± 0.066	3.650 ± 0.015

Detector	Selection	
Acceptance	Stripping	
Reconstruction	Kinematic vetoes	
Tracking	MVA	
	PID	
	Trigger	

- Measured pKK and $p\pi\pi$ branching fractions, relative to CF $pK^{-}\pi^{+}$

	$B(ph^+h^-)/B(pK^-\pi^+)~(imes~10^{-2})$			
	Magnet Up	Magnet Down	PDG	
pK^+K^-	1.406 ± 0.114	1.552 ± 0.094	1.5 ± 0.8	
$p \pi^+ \pi^-$	8.162 ± 0.311	8.093 ± 0.256	7.0 ± 0.4	

- Errors are purely statistical, and include statistical errors in the efficiencies
- Fit, PID, and trigger systematics are being assessed
- Complementary LHCb analysis allows us to validate our selection (ongoing)
 - Prompt Λ_c , different PID criteria and MVA inputs
- PDG values for these poorly known; 50% errors. LHCb can do much better!
- Other measurements differ greatly; worth getting this right

CLEO II¹ $(3.9 \pm 0.9 \pm 0.7) \times 10^{-2}$, Belle² $(1.4 \pm 0.2 \pm 0.2) \times 10^{-2}$

• With production yields now known, ΔA_{CP} should be simple: separate the decays by proton/muon charge and do some arithmetic

$$A_{\text{Raw}}^{\Lambda_c}(h) = \frac{N(\Lambda_c^+ \to ph^+h^-) - N(\Lambda_c^- \to \bar{p}h^+h^-)}{N(\Lambda_c^+ \to ph^+h^-) + N(\Lambda_c^- \to \bar{p}h^+h^-)}, \quad \Delta A_{CP} = A_{\text{Raw}}^{\Lambda_c}(K) - A_{\text{Raw}}^{\Lambda_c}(\pi)$$

• This rests on the assumption that the background asymmetries are mode independent...

$$A_P^{\Lambda_b}(K) = A_P^{\Lambda_b}(\pi), \quad A_D^p(K) = A_D^p(\pi), \quad A_D^\mu(K) = A_D^\mu(\pi)$$

- ... but
 - In general, A_D^p will depend on proton kinematics
 - Proton kinematics will differ between pKK and $p\pi\pi$, as $h^+h^- q^2$ values are different, so cancellation is not exact

Phase Space Considerations

- Difficulties arise from rich resonance structure and large phase space (5D)
 - Relative phases of CPV across the space may cancel when averaged
 - Baryonic ΔA_{CP} difficult to predict, and hard to interpret experimentally
 - If there is CPV, where is it? What's producing it?
 - Crossing resonances may cause in exact K^{\pm} detection asymmetry cancellation
 - Difficult to control \rightarrow large systematic

Dalitz plots of Λ_c daughters: ph^- vs. ph^+

We can use these resonances to our advantage!

 ΔA_{CP} in $\Lambda_c \to ph^+h^-$ at LHCb

Using Λ_c Resonances

- *LHCb* ГНСр
- A neater analysis could use two-body Λ_c resonances: $p\phi (\rightarrow KK)$, $pK_s (\rightarrow \pi\pi)$
 - Measure A_{CP} in $p\phi$, using CF pK_s as a control mode
 - Two-body decays are easier to predict theoretically
 - Any measured CPV is easily attributable to its source
 - KK from ϕ is very strong and narrow, so very little signal is sacrificed, and restricted K^{\pm} momentum makes the detection asymmetry easier to handle

- Proton asymmetries still an issue, but manageable
- Also investigating $pf_0(980)$ ($\rightarrow \pi\pi$): similar proton kinematics to $p\phi$

- LHCb is carrying out precision charm measurements
- We have performed a selection on the Cabibbo-favoured $pK^-\pi^+$ and the Cabibbo-suppressed pKK and $p\pi\pi$ modes
- The detector and selection efficiencies have been evaluated, allowing us to conduct relative branching fraction measurements
- The selection and BF measurements will soon be updated with the full 3 $\rm fb^{-1}$ dataset
- We are now looking forward to be among the first to test for CP violation in charmed baryon decays
- Moving on to study $p\phi$, $pf_0(980)$, and pK_s resonances,
- Future measurement of p/\bar{p} detection asymmetry directly; would greatly aide future analyses at LHCb

Backup

Alex Pearce (Southampton/RAL)

 $\Delta A_{\it CP} {
m in} \ \Lambda_c o ph^+h^- {
m at} \ {
m LHCb}$

09/04/2013 - Slide 15

1. CLEO II pKK BF (1995): http://arxiv.org/abs/hep-ex/9508005 2. Belle pKK BF (2001): http://arxiv.org/abs/hep-ex/0111032

• One production and two detection asymmetries defined as

$$\begin{split} A_P^{\Lambda_b^0} &= \frac{\mathcal{P}(\Lambda_b^0) - \mathcal{P}(\bar{\Lambda}_b^0)}{\mathcal{P}(\Lambda_b^0) + \mathcal{P}(\bar{\Lambda}_b^0)}, \\ A_D^p &= \frac{\epsilon(p) - \epsilon(\bar{p})}{\epsilon(p) + \epsilon(\bar{p})}, \\ A_D^\mu &= \frac{\epsilon(\mu^-) - \epsilon(\mu^+)}{\epsilon(\mu^-) + \epsilon(\mu^+)}. \end{split}$$

• The product of these with the true number of events is the measured number

$$N_{\text{Raw}}(\Lambda_c^+) = \mathcal{P}(\Lambda_b^0)\epsilon(p)\epsilon(\mu^-)N_{\text{True}}(\Lambda_c^+)$$

• Substitute the following for each asymmetry in N_{Raw} , then N_{Raw} in to A_{Raw}

$$A = \frac{f - \bar{f}}{f + \bar{f}}, \quad f = \frac{1}{2}(f + \bar{f})(1 + A), \quad \bar{f} = \frac{1}{2}(f + \bar{f})(1 - A)$$

- BDT input variables chosen to maximise signal/background discrimination
 - Muon and Λ_c daughter p_T
 - Muon and Λ_c daughter track fit quality
 - Lowest impact parameter of the Λ_c daughters
 - Distance of closest approach of daughters to Λ_c vertex
 - Λ_b vertex, impact parameter, and flight distance quality
- PID cuts optimised to maximise signal significance, then tuned for signal purity
- Kinematic vetoes imposed to eliminate tracks with poor PID performance