

ΔA_{CP} in $\Lambda_c \rightarrow ph^+h^$ at LHCb

Alex Pearce

University of Southampton/Rutherford Appleton Laboratory

Contents

- CP Violation in Charm
- Origins of CPV
- The LHCb Detector
- Analysis Overview
- \bullet ΔA_{CP}
- 2011 Selection
	- Efficiencies
	- Relative Branching Fractions
- Back to ΔA_{CP}
- Phase Space Considerations
- Using Λ_c Resonances
- Conclusions

CP Violation in Charm

- Large interest in charm sector CP violation (CPV), mostly D^0 decays, all mesons
	- Mixing, direct in ΔA_{CP} and indirect in A_Γ
- Significant deviations from SM could mean new physics
- Good agreement with SM constrain other models

• Current world average consistent with no CPV at 2% CL

- Weak phase from CKM matrix can lead to interference in Feynman diagrams and non-zero cancellation of matrix elements, i.e. CPV
- A singly Cabibbo-suppressed (SCS) vertex provides a possible source of CP violation this way:

- SM still doesn't predict our existence, must be undiscovered CPV somewhere
- Charm CPV predictions very small; $O(1\%)$ effect could be new physics

The LHCb Detector

- 853 members from 63 institutes in 17 counties
- Excellent vertex resolution and particle identification
- Triggering reduces LHC rate of 40 MHz to 3 kHz for storage
- Largest charm yields in the world

Alex Pearce (Southampton/RAL) ΔA_{CP} in $\Lambda_c \to ph^+h^-$ at LHCb

Analysis

• 3 Λ*c* decays: SCS *pKK* and *pππ* for CP measurement, Cabibbo-favoured *pK−π⁺* as control mode

$$
\Lambda_b^0 \to \Lambda_c^+ \mu^- X, \quad \Lambda_c^+ \to p h^+ h^-, \quad h \in [K, \pi]
$$

- Measure relative branching fractions of the SCS modes to CF
- Pros and cons compared to D^0 analyses
	- ✓ Double tagging, no lifetime dependance (no indirect CPV)
	- × 5D phase space, due to spin, adds complexity
- Full 2011 $\&$ 2012 dataset (3 fb^{-1})

• Given no CP violation, the difference of branching fractions between matter and antimatter modes would be zero, measure of the deviation is A_{CP}

$$
A_{CP}^{\Lambda_c}(h) = \frac{\Gamma(\Lambda_c^+ \to ph^+h^-) - \Gamma(\Lambda_c^- \to \bar{p}h^+h^-)}{\Gamma(\Lambda_c^+ \to ph^+h^-) + \Gamma(\Lambda_c^- \to \bar{p}h^+h^-)}
$$

• What's measured is the matter and antimatter yields, tagged by the proton/muon charge; but contaminated by 'background' asymmetries

$$
A_{\text{Raw}}^{\Lambda_c}(h) = \frac{N(\Lambda_c^+ \to ph^+h^-) - N(\Lambda_c^- \to \bar{p}h^+h^-)}{N(\Lambda_c^+ \to ph^+h^-) + N(\Lambda_c^- \to \bar{p}h^+h^-)}
$$

= $A_{CP}^{\Lambda_c}(h) + A_P^{\Lambda_b}(h) + A_D^p(h) + A_D^\mu(h) + \mathcal{O}(A^3)$

• Tricky to measure A_P and A_D , but if these background asymmetries are modeindependent can take the difference to leave pure physics

$$
\Delta A_{CP}^{\Lambda_c} = A_{\text{Raw}}^{\Lambda_c}(K) - A_{\text{Raw}}^{\Lambda_c}(\pi) \approx A_{CP}^{\Lambda_c}(K) - A_{CP}^{\Lambda_c}(\pi)
$$

• Clean selection to prevent asymmetries from other processes

2011 Selection

- Per-mode selections consist of a multivariate algorithm (boosted decision tree) and tight particle identification (PID) requirements
- Kinematics vetoes imposed, in p and η , to improve PID performance
- Misidentifications checked, e.g. $D_s \to KKK$, by testing wrong mass hypothesis, no peaking backgrounds found

- Raw yields extracted from unbinned fits to Λ*c* mass; double Gaussian signal, exponential background
- Efficiencies must be calculated to know the production yield

Detector Selection

Acceptance Stripping

Tracking MVA

Reconstruction Kinematic vetoes

PID

Trigger

• Efficiencies compensate for detector and selection imperfections

- We don't detect every produced signal decay
- Cuts reduce background at the cost of signal
- True production yields calculable with efficiencies

 $N_{\text{Raw}} = N_{\text{Produced}} \times \epsilon_{\text{Selection}} \epsilon_{\text{Detector}}$

- MVA, PID, tracking, and veto efficiencies from data
- Stripping, trigger, reconstruction, and acceptance from full LHCb simulation

• Measured *pKK* and *pππ* branching fractions, relative to CF *pK−π⁺*

- Errors are purely statistical, and include statistical errors in the efficiencies
- Fit, PID, and trigger systematics are being assessed
- Complementary LHCb analysis allows us to validate our selection (ongoing)
	- Prompt $Λ_c$, different PID criteria and MVA inputs
- PDG values for these poorly known; 50% errors. LHCb can do much better!
- Other measurements differ greatly; worth getting this right

CLEO II¹ (3.9 \pm **0.9** \pm **0.7)** \times **10⁻², Belle² (1.4** \pm **0.2** \pm **0.2)** \times **10⁻²**

• With production yields now known, ΔA_{CP} should be simple: separate the decays by proton/muon charge and do some arithmetic

$$
A_{\text{Raw}}^{\Lambda_c}(h) = \frac{N(\Lambda_c^+ \to p h^+ h^-) - N(\Lambda_c^- \to \bar{p} h^+ h^-)}{N(\Lambda_c^+ \to p h^+ h^-) + N(\Lambda_c^- \to \bar{p} h^+ h^-)}, \quad \Delta A_{CP} = A_{\text{Raw}}^{\Lambda_c}(K) - A_{\text{Raw}}^{\Lambda_c}(\pi)
$$

• This rests on the assumption that the background asymmetries are mode independent...

$$
A_P^{\Lambda_b}(K) = A_P^{\Lambda_b}(\pi), \quad A_D^p(K) = A_D^p(\pi), \quad A_D^\mu(K) = A_D^\mu(\pi)
$$

- ... but
	- In general, A_D^p will depend on proton kinematics
	- Proton kinematics will differ between pKK and $p\pi\pi$, as $h^+h^ q^2$ values are different, so cancellation is not exact

Phase Space Considerations

- Difficulties arise from rich resonance structure and large phase space $(5D)$
	- Relative phases of CPV across the space may cancel when averaged
	- Baryonic ΔA_{CP} difficult to predict, and hard to interpret experimentally
		- If there is CPV, where is it? What's producing it?
	- Crossing resonances may cause inexact K^{\pm} detection asymmetry cancellation
		- Difficult to control \rightarrow large systematic

Dalitz plots of Λ_c daughters: ph^- vs. ph^+

We can use these resonances to our advantage!

Alex Pearce (Southampton/RAL) ΔA_{CP} in $\Lambda_c \to ph^+h^-$ at LHCb

Using Λ*c* Resonances

-
- A neater analysis could use two-body Λ_c resonances: $p\phi$ (\rightarrow KK), pK_s ($\rightarrow \pi\pi$)
	- Measure A_{CP} in $p\phi$, using CF pK_s as a control mode
	- Two-body decays are easier to predict theoretically
	- Any measured CPV is easily attributable to its source
	- KK from ϕ is very strong and narrow, so very little signal is sacrificed, and restricted K^{\pm} momentum makes the detection asymmetry easier to handle

- Proton asymmetries still an issue, but manageable
- Also investigating $pf_0(980)$ ($\rightarrow \pi\pi$): similar proton kinematics to $p\phi$

- LHCb is carrying out precision charm measurements
- We have performed a selection on the Cabibbo-favoured *pK−π+* and the Cabibbosuppressed pKK and $p\pi\pi$ modes
- The detector and selection efficiencies have been evaluated, allowing us to conduct relative branching fraction measurements
- The selection and BF measurements will soon be updated with the full 3 fb⁻¹ dataset
- We are now looking forward to be among the first to test for CP violation in charmed baryon decays
- Moving on to study $p\phi$, $pf_0(980)$, and pK_s resonances,
- Future measurement of p/\bar{p} detection asymmetry directly; would greatly aide future analyses at LHCb

Backup

 ΔA_{CP} in $\Lambda_c \to ph^+h^-$ at LHCb 09/04/2013 - Slide 15

1. CLEO II *pKK* BF (1995):<http://arxiv.org/abs/hep-ex/9508005> 2. Belle *pKK* BF (2001):<http://arxiv.org/abs/hep-ex/0111032>

• One production and two detection asymmetries defined as

$$
A_P^{\Lambda_b^0} = \frac{\mathcal{P}(\Lambda_b^0) - \mathcal{P}(\bar{\Lambda}_b^0)}{\mathcal{P}(\Lambda_b^0) + \mathcal{P}(\bar{\Lambda}_b^0)},
$$

$$
A_D^p = \frac{\epsilon(p) - \epsilon(\bar{p})}{\epsilon(p) + \epsilon(\bar{p})},
$$

$$
A_D^\mu = \frac{\epsilon(\mu^-) - \epsilon(\mu^+)}{\epsilon(\mu^-) + \epsilon(\mu^+)}.
$$

• The product of these with the true number of events is the measured number

$$
N_{\text{Raw}}(\Lambda_c^+) = \mathcal{P}(\Lambda_b^0)\epsilon(p)\epsilon(\mu^-)N_{\text{True}}(\Lambda_c^+)
$$

• Substitute the following for each asymmetry in N_{Raw} , then N_{Raw} in to A_{Raw}

$$
A = \frac{f - \bar{f}}{f + \bar{f}}, \quad f = \frac{1}{2}(f + \bar{f})(1 + A), \quad \bar{f} = \frac{1}{2}(f + \bar{f})(1 - A)
$$

- BDT input variables chosen to maximise signal/background discrimination
	- Muon and Λ*c* daughter *pT*
	- Muon and Λ_c daughter track fit quality
	- Lowest impact parameter of the Λ*c* daughters
	- Distance of closest approach of daughters to Λ*c* vertex
	- Λ_b vertex, impact parameter, and flight distance quality
- PID cuts optimised to maximise signal significance, then tuned for signal purity
- Kinematic vetoes imposed to eliminate tracks with poor PID performance