IOP Institute of Physics **2013** High Energy and Astro Particle Physics

Charm and New Physics Opportunities @ Colliders

"A person who never made a mistake never tried anything new"

Institute Of Physics Joint HEPP & APP workshop Liverpool- UK 10/04/2012

Gianluca Inguglia Queen Mary, University of London g.inguglia@qmul.ac.uk, gianluca.inguglia@cern.ch

 $D^{0} meson$ $c - \overline{u} \quad bound \quad state$ $Mass \quad m = 1864.83 \pm 0.14 \quad MeV$ $Mean \quad lifetime \quad \tau = 410.1 \pm 1.5 \quad x \quad 10^{-15} \quad s$ $c \quad \tau = 122.9 \quad \mu m$ $I(J^{P}) = \frac{1}{2}(0^{-})$

Charmonium Spectroscopy

•CP Violation

- Direct
- Indirect
- Interference: charm unitarity triangle
- Mixing
- •Rare decays

Here we concentrate on D^0 mesons, in particular to CP violation and mixing, and how to use related measurements to infer new physics

Tests discussed here can be performed in both hadron or electron/positron colliders

In past two years very interesting measurement aimed to test CP invariance in the charm sector have been performed by various collaborations: BaBar, Belle, CDF, LHCb...

In particular the decay channels $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ have been used to construct the observable ΔA_{CP} :

$$\Delta A_{\rm CP} = A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) = \Delta A_{\rm CP}^{\rm dir} + \frac{\Delta \langle t \rangle}{\tau} A_{\rm CP}^{\rm ind}$$

. .

However, we think that a different approach should be taken. In particular a time-dependent analysis of D^0 mesons decay may help to clarify the most recent results and may open the door to the exploration of some "new territory"...

Numerical Results

ϕ_{ML}	X	$\beta_{c,eff}$	X			
Parameter	Sup Ψ(377 SL	er-Charn 0) Ψ(3770 SL+K) SuperB) $\Upsilon(4S)$ π_s^{\pm}	LHCb π_s^{\pm}	$\begin{array}{ c c } \hline & \text{Belle II} \\ & \pi_s^{\pm} \end{array}$	<i>CU</i> triangle
$ \begin{array}{c} \sigma_{\phi_{\pi\pi}} = \sigma_{arg(\lambda_{\pi\pi})} \\ \sigma_{\phi_{KK}} = \sigma_{arg(\lambda_{KK})} \\ \sigma_{\beta_{c,eff}} \end{array} \right $	$5.7^{\circ} \ 3.5^{\circ} \ 3.3^{\circ}$	2.4° 1.4° 1.4°	2.2° 1.6° 1.4°	3.0° 1.8° 1.9°	$ \begin{array}{c c} 2.8^{\circ} \\ 1.8^{\circ} \\ 1.7^{\circ} \end{array} $	$egin{array}{c c} V_{ud}^*V_{cd} & & & & & & & & & & & & & & & & & & &$
Experiment/HFAG	$\sigma_{\varphi_{KK}}$	$=\sigma_{arg(\lambda_{KK})};$ $(\phi = \pm 10^{\circ})$	$= \mathcal{O}_{\varphi_{MIX}}$ $\sigma_x(\phi = \pm 20)$	$0^{o})$	F	$V_{us}^* V_{cs}$
Super $B [\Upsilon(4S)]$ $D^0 \to \pi^+ \pi^-$ $D^0 \to K^+ K^-$		$0.12\% \\ 0.08\%$	$0.06\% \\ 0.04\%$		d 0.3	Decay Asymmetries $ \lambda = 1$
Super $B \left[\Psi(3770)\right]$ $D^0 \rightarrow \pi^+\pi^-(SL)$ $D^0 \rightarrow \pi^+\pi^-(SL+K)$ $D^0 \rightarrow K^+K^-(SL)$)	0.30% 0.13%	0.15% 0.06%		0.2	$B^{o}(y_{B}=0)$ $D^{o}x100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K)	0.19% 0.08%	0.10% 0.04%		0	(\$ = -7.5°)
$D^{0} \to \pi^{+} \pi^{-} (1.1 \text{ fb})$ $D^{0} \to K^{+} K^{-} (1.1 \text{ fb})$ $D^{0} \to \pi^{+} \pi^{-} (5.0 \text{ fb})^{-}$ $D^{0} \to K^{+} K^{-} (5.0 \text{ fb})^{-}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$	$\begin{array}{c} 0.40\% \\ 0.22\% \\ 0.15\% \\ 0.09\% \end{array}$	0.20% 0.11% 0.08% 0.04%		-0.1 -0.2	$ \begin{array}{c} D^{o} \times 100 \\ (\phi = +2.5^{o}) \\ D^{o} \times 100 \\ (\phi = -17.5^{o}) \end{array} $
Belle II $D^0 \rightarrow \pi^+ \pi^-$ $D^0 \rightarrow K^+ K^-$		0.14%	0.07% 0.04%		-0.3	
HFAG	IFAG 0.20%				-3	Δt [ps]

Numerical Results

CU triangle $V_{ud}^* V_{cd}$ $\beta_c \qquad \alpha_c V_{ub}^* V_{cb}$ $V_{us}^* V_{cs}$

Mixing in the standard model

For various reasons the SM cannot be considered as the ultimate theory of nature:

- neutrinos are predicted to be massless but they do exhibit mixing of flavour, and this means that they must have mass different by zero,
- dark matter particles and dark energy are not described in the theory,
- gravity is not included in the theory,
- hierarchy problem.

For these reasons the theory needs new testable developments...

Could New Physics be found in the charm triangle?

Bevan, Inguglia, Meadows: to appear soon Could New Physics be found in the charm triangle?

10

U(1)' extension of the SM and new tree level **FCNC's**

- The SM is a gauge theory of elementary particles and forces: SU(3)xSU(2)xU(1).
- The SM group can be extended by adding an additional unitary group U(1)'.
- The U(1)' symmetry breaking generates a new massive neutral boson, X.
- This requires an **extended** Higgs mechanism with a non-zero vev which couple to the three weak bosons and to the new X boson.
- We assume X is **leptophobic**.
- We assume X to be **flavour violating**.

Bevan, Inguglia: work in progress...

$$\mathcal{L} = g J_3^{\mu} W_{3\mu} + g' J_Y^{\mu} B_{\mu} + g'' J_X^{\mu} C_{\mu}, \tag{1}$$

where $g, g', W_{3\mu}, B_{\mu}$ are the usual couplings and gauge bosons for SU(2) and $U(1), J_3^{\mu}$ are J_Y^{μ} are their currents, and the terms g_X, J_X^{μ} and C_{μ} represents the coupling, current, and gauge boson for the new group U'(1). the currents are defined as:

$$J_3^{\mu} = \sum_i \bar{f}_i \gamma^{\mu} [t_{3i_L} P_L + t_{3i_R} P_R] f_i, \qquad (2)$$

$$J_Y^{\mu} = \sum_i \bar{f}_i \gamma^{\mu} [y_{i_L} P_L + y_{i_R} P_R] f_i, \qquad (3)$$

$$J_X^{\mu} = \sum_i \bar{f}_i \gamma^{\mu} [c_L(i)P_L + c_R(i)P_R] f_i.$$
(4)

To have the correct electric charge, it has to be:

$$t_{3i_L} + y_{i_L} + c_L = t_{3i_R} + y_{i_R} + c_R = q(f_i), \tag{5}$$

11

Charm mixing in SU(3)xSU(2)xU(1)xU(1)'

Neutral mesons mixing would be the result of the interference of the "box" amplitudes with the new tree level FCNC's mediated by the *X* boson.

Limits can be put here if one consider neutral B and K mixing. However charm mixing seems to point to large values.

X-Boson: a possible direct test

Typically, such a boson, would decay violating flavour. In a high energy experiment, if produced, it could be possible to observe a signature in the DiJet invariant mass distribution (ATLAS-CMS) by requiring the two jets to be both up- or down-type. Not easy but tempting. Or by performing Di-Boson ($X \rightarrow ZZ$) studies in virtue of the Landau-Yang theorem

Conclusions

- Time-dependent analysis in charm decay has been discussed.
- One can test the SM by measuring angles of the **charm triangle**. Is there new physics in the charm system?
- Effects of a 4th generation of fermions on charm triangle have been introduced.
- A U'(1) extension of the standard model has been introduced in which a new neutral X boson naturally arises, showing that mixing can be interpreted in terms of the interference of the different amplitude contributing to process including the tree-level FCNC.
- **Direct signatures** of such a *X* boson can be searched for at the **LHC**.

...Many Thanks...

