$b \rightarrow (s, d)\mu\mu$ decays at LHCb

Greg Ciezarek, on behalf of the LHCb collaboration

Imperial College London

April 9, 2013
New particles, if they exist, enter into loop diagrams
Their influence may measurably change observables:
 • Branching fraction (total or differential)
 • Angular distribution
 • CP asymmetry

Look in processes which only occur at loop level in SM -
Flavour Changing Neutral Current decays (FCNCs)
Minimal Flavour Violation

- If new physics is allowed to violate flavour generically, B and Kaon physics set a lower bound on the mass scale for new physics at $10^3 - 10^4$ TeV (for O(1) couplings)
- Assume new physics only violates flavour in same pattern as SM
 - Only source of flavour violation in SM is CKM matrix
 - CKM matrix arises from Yukawa couplings
- Minimal Flavour Violation (MFV): hypothesis that the only sources of flavour violation are the Yukawa couplings
 - Common assumption in new physics models
Consequences of MFV

- MFV does not mean no deviations from SM possible in flavour physics
- Constrains ratios of observables
 - In SM & MFV, ratio of branching fractions for $b \to s \mu^+ \mu^-$ and $b \to d \mu^+ \mu^-$ is given by the CKM factor $|V_{td}|^2/|V_{ts}|^2$ ($\sim 1/25$)
 - Measuring a deviation from this would indicate new non-MFV physics
 - Can test this using exclusive modes $B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to \pi^+ \mu^+ \mu^-$
\[B^+ \rightarrow K^+ \mu^+ \mu^- \]

- \(B^+ \rightarrow K^+ \mu^+ \mu^- \) previously measured by BaBar (shown), BELLE and CDF (rarest B decay seen before LHCb)
- Combined world sample: \(\sim 250 \) signal candidates
\[B^+ \rightarrow K^+ \mu^+ \mu^- \]

- \(B^+ \rightarrow K^+ \mu^+ \mu^- \) now also measured by LHCb, using 2011 dataset (1 fb\(^{-1}\))
 - \(\sim 1200 \) signal candidates
- \(\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-) = (4.36 \pm 0.15 \pm 0.18) \times 10^{-7} \)
- Differential BR and angular observables also measured, all consistent with SM (LHCB-PAPER-2012-263)
- Is a background to \(B^+ \rightarrow \pi^+ \mu^+ \mu^- \)
1. Introduction

\[B^+ \rightarrow \pi^+ \mu^+ \mu^- \]

- Search for \(B^+ \rightarrow \pi^+ \mu^+ \mu^- \) using 2011 dataset (LHCB-PAPER-2012-020)
- No \(b \rightarrow d \mu^+ \mu^- \) transition has previously been observed
- Previous best limit is \(< 6.9 \times 10^{-8}\), from BELLE
- SM prediction \((1.96 \pm 0.21) \times 10^{-8}\)
Selection

- Use a Boosted Decision Tree (BDT) to separate signal (black) from combinatorial background (red)
- Use simulated $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ events for signal sample, portion of mass sidebands in data for background sample
 - Background sample used is excluded from remainder of analysis
- Hadron particle identification requirements suppress $B^+ \rightarrow K^+ \mu^+ \mu^-$ by a factor ~ 100
Fit strategy

- Signal and misidentified background mass shapes both taken from data:
- Signal taken from $B^+ \rightarrow J/\psi K^+$ under the correct $(M_{K\mu\mu})$ mass hypothesis (left)
- Misidentified $B^+ \rightarrow K^+ \mu^+ \mu^-$ taken from $B^+ \rightarrow J/\psi K^+$ under the $(M_{\pi\mu\mu})$ mass hypothesis (left)
Fit validation

- Fit strategy validated on $B^+ \rightarrow J/\psi \pi^+$ in data
- Observed $B^+ \rightarrow J/\psi K^+$ yield (1024 ± 61) consistent with expectation (958 ± 31)
• $25.3^{+6.7}_{-6.4} \ B^+ \to \pi^+ \mu^+ \mu^- \ \text{candidates, corresponding to a significance of } 5.2 \ \sigma$
• $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6 \ (\text{stat}) \pm 0.1 \ (\text{syst})) \times 10^{-8}$
• Consistent with SM prediction of $(1.96 \pm 0.21) \times 10^{-8}$
Measure ratio between $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ \mu^+ \mu^-$ directly

Determine $|V_{td}|/|V_{ts}| = 0.266 \pm 0.035 \text{ (stat)} \pm 0.003 \text{ (syst)}$

- Theory uncertainty not yet available
- Consistent with previous determinations
Conclusion

- $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ observed at 5.2 σ
 - First observation
 - First $b \rightarrow d \mu^+ \mu^-$ transition observed
- $\mathcal{B}(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6 \text{ (stat)} \pm 0.1 \text{ (syst)}) \times 10^{-8}$
 - Rarest B decay observed
 - Agrees with SM prediction
- Ratio of $\mathcal{B}(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$ and $\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)$ used to extract $|V_{td}|/|V_{ts}| = 0.266 \pm 0.035 \text{ (stat)} \pm 0.003 \text{ (syst)}$
 - Agrees with previous determinations
- No evidence for non-MFV physics
- SM wins again