RATIO MEASUREMENT OF W/Z + JETS AT ATLAS

Motivation

- 2
- Vector boson (V) + jets measurements are in general an important background for new physics:
 - E.g. W+Jets events are a major background for physics processes with a final state including missing transverse energy (MET) and hadronic jets, such as single top measurements and SUSY searches.
- The ratio measurement (W+Jets)/(Z+Jets) provides a high precision test of perturbative QCD since the ratio conserves information on the dynamics of V +Jets production whilst largely reducing the common systematic uncertainties associated with the measurement:
 - Experimental level: largely reduced jet energy scale and luminosity uncertainties.
 - Theoretical level: reduced dependence on PDFs.

Measurement

- Measurement performed for both the electron and muon channels and a combined cross-section.
- Previous measurement with 2010 data (Phys. Lett. B708 (2012), 221-240):
 - Measurement with exactly one associated jet.
 - Ratio presented as a function of jet P_T threshold.
 - Comparison with LO Monte Carlos (Pythia and Alpgen) and NLO calculations (MCFM) showed good agreement between data and predictions.

Measurement

- For the 2011 dataset we intend to perform comparisons with LO MCs (Alpgen and Sherpa) and with NLO calculations (BlackHat +Sherpa) and to extend the analysis scope to following distributions:
 - **D** N_{jets} : Inclusive distribution and the ratio $N_{jet}/(N_{jet}-1)$
 - I Jet properties: P_T and rapidity (y) of the 1st, 2nd, 3rd and 4th leading jets.
 - **Dijet variables:** M_{12} , ΔR_{12} , $\Delta \Phi_{12}$, Δy_{12}
 - $\ \ \, \square \ \ \, P_T \ \, sums: \ \ \, H_T \ \, and \ \, S_T.$
- Analysis group consists of members from QMUL, Oxford, UMass, Tufts, CERN, Santa Cruz, Michigan, Heidelberg, LBNL.

Analysis Strategy

Greg Fletcher - Queen Mary, University of London

Event Selection

Detector Level Results

7

Unfolding to Particle Level

- Want to correct our data to account for detector level effects:
 - **E.g.** Trigger and reconstruction efficiencies and resolution.
- Bayesian iterative unfolding with RooUnfold.
 - Use Alpgen signal samples to build response matrices from events at reconstructed level and particle level.
- Apply external fake jet correction factors derived from Alpgen after background subtraction and before unfolding.
 - Accounts for reconstructed level events which are unmatched at particle level.
- Systematics associated with the unfolding procedure:
 - Model: Choice of signal MC used to unfold (e.g. Alpgen, Sherpa etc.)
 - Method: Bayesian vs. Bin-by-bin.
 - Statistical: Limits of MC sample size used to unfold.

Fake Corrections

Response Matrices

Closure Tests

- Perform the unfolding procedure using Alpgen MC in place of data.
- Expect very good agreement.

- Unfold Sherpa signal MC using Alpgen.
- Good agreement in the low P_{T} region.
- Low statistics at high P_{T} , unfolded results agree with the prediction within our systematic errors.

Greg Fletcher - Queen Mary, University of London

do/dy [pb/dy

Conclusions

- 12
- R_{jets} is a very high precision measurement which, with the high statistics of the 2011 ATLAS dataset, we can expand upon the 2010 analysis to include a large number of observables.
- Current state of the analysis:
 - Finalising unfolding procedure and associated systematics.
 - Studies ongoing to provide data-driven ttbar and QCD background estimations.
 - Aiming to publish as soon as possible.