

Electroweak Gauge Boson and Associated Jet Production at LHCb

Will Barter On behalf of the LHCb Collaboration

University of Cambridge

9th April 2013

Motivation - LHCb Detector - Jet Reconstruction at LHCb Selection of Z+Jet events - Kinematic Distributions and Cross-sections Conclusions

Motivation

- Studies of $Z \rightarrow \mu \mu$ + jet production at LHCb:
 - test MC predictions in the forward region where they are not tuned. This is especially interesting at low p_T.
 - probe previously unexplored regions of phase space (low x, high Q^2).
 - ► allow us to probe PDFs in a previously unexplored kinematic region.

Right hand plot from Thorne et al. (arXiv:0808:1847).

Motivation

• The jet measurements are particularly sensitive to the gluon PDF at low x.

The LHCb Detector

Coverage between: $\sim 2 < \eta < 5$.

Will Barter (University of Cambridge)

Z + Jet Production at LHCb

9th April 2013 4 / 15

Jet Reconstruction at LHCb

- In order to find jets, particles in the event must be passed to a jet finding algorithm. We take a particle flow approach for this. We consider:
 - Charged Particles taken from well reconstructed tracks, from the same PV as the interaction of interest,
 - Photons taken from clusters in the ECAL that do not match tracks.
 - Vos mainly K_s^0 and Λ^0 .
 - Other Neutral Hadronic Particles taken from clusters in the HCAL that do not match tracks.
- A fully calorimeter based approach is not possible at LHCb as the ECAL saturates for $E_T > 10$ GeV the LHCb calorimeters are optimised for B physics and are mainly used to trigger on events.

< 回 ト < 三 ト < 三 ト

Jet Reconstruction at LHCb

- The particles are passed to the FASTJET jet finding program.
- The jets are then reconstructed using the anti-kT algorithm, using R = 0.5 - particles within a radius of 0.5 in $\eta - \phi$ space tend to be clustered.

• Jets are required to pass quality requirements, and to be in the LHCb acceptance (2.0 < η < 4.5). We determine the efficiency (\gtrsim 90%) of the quality cuts to an accuracy of ~ 1%.

Jet Energy Correction (JEC) and Resolution

• We correct the measured jet energy by a scaling factor, to give a best estimate of the true jet energy:

 $p_{\mathsf{T}}(\text{reco jet}) = k(\mathsf{nPV}, p_{\mathsf{T}}, \eta) \cdot p_{\mathsf{T}}(\text{clustered jet})$

- This correction is found by comparing jets reconstructed at the MC truth (hadron) level to reconstructed jets in MC events.
- k typically takes values between 0.95 & 1.05.
- Comparison between data and MC of the p_T balance of Z and jet (when they are emitted back to back) shows that we can trust the MC JEC to an accuracy of $\sim 3\%$ (checked as a function of p_T , η).

- 4 同 6 4 日 6 4 日 6

Jet Energy Correction (JEC) and Resolution

- Resolution of jet p_T is ~ 15% (1/2 FWHM). This is relatively flat (for $10 < p_T < 100$ GeV).
- Resolve Jet Direction (in $\eta \phi$) with $\Delta R(\text{truth, reco}) < 0.1$ for $\sim 90\%$ of jets.

Will Barter (University of Cambridge)

Selection of Z+Jet events

- Trigger on single muons with $p_{T}(\mu) > 10$ GeV.
- LHCb Z \rightarrow $\mu\mu$ fiducial acceptance: J. High Energy Phys. 06 (2012) 058
 - $p_{T}(\mu) > 20$ GeV, $2.0 < \eta(\mu) < 4.5$,
 - $60 < M(\mu\mu) < 120$ GeV.
- Reconstruct ~ 50000 Z $\rightarrow \mu\mu$ events in $\int \mathcal{L}dt \sim 1 \text{ fb}^{-1}$ of $\sqrt{s} = 7 \text{ TeV}$ data collected in 2011.
- In the Z+jet analysis, we use the same acceptance and require at least one jet with:
 - *p*_T(jet) > 10(20) GeV,
 - ▶ 2.0 < η(jet) < 4.5,</p>
 - and $\Delta R(\mu, \text{ jet}) > 0.4$.
- Reconstruct $\sim 10000(4000)$ events in 2011 data.
- Background level not significantly different between Z and Z + jet events $\sim 0.3\%.$

Z Detection Efficiencies

- Determine Z detection efficiencies using data driven approach.
- Measure using tag and probe methods:
 - Muon ID efficiency (~ 99%),
 - Muon Track reconstruction efficiency (~ 90% to reconstruct a muon track passing quality requirements strong η dependence),
 - Muon Trigger efficiency (~ 91% to trigger on either muon).

• Select \sim 70% of $Z \rightarrow \mu\mu$ decays in acceptance.

Kinematic Distributions of Z+Jet events

- We see very good agreement between the LHCb PYTHIA Monte Carlo Simulation (MC) and the 2011 LHCb Data.
- Plots not corrected for detection efficiencies, and are normalised to unit integral.

$Z p_T$ and Rapidity Distributions

Kinematic Distributions of Z+Jet events

- *p*_T distributions encode information about higher orders in pQCD, whereas (pseudo)rapidity distributions are related to the PDFs.
- To probe this physics, we need to measure the cross-section.

Cross-section Measurement

- We correct for the Z detection efficiencies and unfold the data to correct for the jet energy resolution and jet detection efficiencies.
- The agreement between data and MC gives us confidence in the MC based corrections (with systematic uncertainties assigned from compatibility of MC with data).
- e.g. The dominant systematic uncertainty is from the validation of the MC based Jet Energy Correction on data.
- We also consider systematic uncertainties from the unfolding process, the Z detection efficiency, and the validation of the Jet Detection Efficiency and the Jet Energy Resolution on data.

通 ト イヨ ト イヨト

Cross-section Measurement

 $\begin{aligned} \sigma(Z + \text{Jet}) / \sigma(Z) &= 0.229 \pm 0.006(\textit{stat.}) \pm 0.009(\textit{syst.}) \text{ (LHCb prelim.)} \\ &\quad 0.212 \ ^+_{-0.009}(\textit{PDF}) \ \pm 0.016(\textit{scale}) \text{ (Theory)} \end{aligned}$

- Also in LHCb-CONF-2012-016:
 - Jet multiplicity distribution,
 - Z rapidity, p_T distributions in Z+Jet events,
 - Jet detection efficiencies,
 - Jet reconstruction performance.
- More distributions to follow soon.

Conclusions

- Measurements of Z+jet production at LHCb provide tests of:
 - QCD especially its treatment in different Monte Carlo programs,
 - parton distribution functions LHCb probes a previously unexplored region of phase space.
- We see good agreement in the kinematic distributions of Z+Jet events between data and Monte Carlo.
- Our measurement of the Z+Jet cross-section is consistent with SM predictions.

BACKUP SLIDES

-

3

Background Studies

- Background level in Z and Z+Jet events is consistent.
- Confirmed by direct estimate of number of background events: studied in data (mis-ID, heavy flavour background), and MC $(Z \rightarrow \tau \tau, \text{ top pair production.})$

Jet Detection Efficiency

• Plots shown here have tighter jet ID requirements than those now used.

Jet Energy Scale Validation

- In events where the Z and jet are produced back to back, the p_T balance in data and MC agrees well.
- Study of this data/MC compatibility as a function of jet p_T and η sets a systematic uncertainty on the jet energy scale of ~ 3%.

Z p_T Distribution in Z+Jet events

• LHCb result from LHCb-CONF-2012-016.