

Selection at the T2K Far Detector: Super-Kamiokande

Queen Mary, University of London

The T2K Experiment

Super-K Data Flow

Timing and Event Classification

Event Reconstruction

Ring Counting and PID

Ring Counting

Hough Transform technique:

- 42° ring drawn from each PMT to fill Hough space
- Peaks correspond to rings
- Repeated up to 5 times, removing contribution from previous rings

PID assigned based on Likelihood, tested with scaled detector in test-beam

Electron-like fuzzy rings

Ve Electron Electron neutrino shower

Muon-like sharp rings

π^0 Fitter

- Neutral Current π^0 events main background to ν_e appearance analysis because of:
- 1. Overlapping gamma shower rings
- 2. Asymmetric π^0 decay with 2nd ring invisible
- Force a search for second ring and reconstruct an invariant mass from the two rings

Cuts for ν_{μ} Analysis Sample

Cuts for ν_{μ} Analysis Sample

RUN 1+2+3	Data	MC Expectations w/ Oscillation				
0.010 /10 101		MC Total	\mathbf{v}_{μ} +anti- \mathbf{v}_{μ} CCQE	ν _μ +anti-ν _μ CC non-QE	\mathbf{v}_{e} +anti- \mathbf{v}_{e} CC	NC
True FV	-	296.67	45.22	110.25	8.31	132.89
FV + FC	174	166.61	34.37	83.83	7.93	4048
One-ring	88	83.56	3247	34.52	5.03	11.55
µ-like	66	67.74	31.83	3242	0.04	345
p_{μ} > 200 MeV/c	65	67.33	31.60	32.35	0.04	3.34
N _{dcy-e} <=1	58	57.78	31.25	23.29	0.03	3.21
Efficiency [%]	-	19.5	69.1	21.1	04	24
arXiv hep-ex/1201.1386						

MC assuming 2-v oscillation w/ sin²2 θ_{23} = 1.0, Δm_{23}^2 = 24 x 10⁻³ eV2

Cuts for ν_{e} Analysis Sample

4/9/13

Cuts for ν_{e} Analysis Sample

RUN 1+2+3	Data	MC Expectations w/ Oscillation					
0.010 /10 101		MC Total		v_{e} +anti- v_{e} CC	NC	v _µ →v _e CC	
True FV	-	3114	158.3	8.3	131.6	13.2	
FV + FC	174	180.5	119.6	8.0	40.2	12.7	
One-ring	88	95.7	684	5.1	114	10.8	
e-like	22	264	2.7	5.0	8.0	10.7	
Evis > 100 MeV	21	24.1	1.8	5.0	6.9	104	
$N_{dcy-e} = 0$	16	19.3	0.3	4.0	5.9	9.1	
π ⁰ mass < 105 MeV/c ²	11	13.0	0.09	2.8	1.6	8.5	
$\rm E_v < 1250~MeV$	11	11.2	0.06	1.7	1.2	8.2	
Efficiency [%]	-	3.6	0.04	20.5	0.9	62.12	

arXiv hep-ex/1304.0841

MC assuming 3- ν oscillation w/ sin²2 θ_{13} = 0.1, $\delta_{CP} = Q_{11}$

Summary of Cuts for Analysis Samples

Future

- New event reconstruction techniques fiTQun
 - Improved π⁰/e discrimination
 - Possible μ/π separation
- Multivariate selection methods
 - Select different kinematic regions
 - Complementary and improved selection of ν_{e} and ν_{μ} events.

Multilayer Perceptron (MLP)

Training	MLP	Current Analysis		
Cut Value	0.51 (A.U.)	105 (MeV)		
E_{v}^{Rec} (MeV)	1125	1250		
Sens. 90% C.L. to Sin ² 20 ₁₃	0.038	0.056		

Equal 10% BG and 10% signal systematic

errors

optimisation

4/9/13

Conclusion

- Super Kamiokande is working perfectly as the T2K far detector
- + 11 candidate ν_e and 58 ν_μ events recorded so far with ~4% of total POT
- New methods will improve reconstruction and selection.