

Search for heavy resonances decaying to longlived neutral particles

Emyr Clement on behalf of the CMS Collaboration

E Clement

Motivation

- Many new physics scenarios predict heavy long-lived particles
 - Weak R-Parity Violating SUSY
 - ➡ Split SUSY
 - ➡ Hidden Valley Scenario
 - Exotic decays of recently discovered Higgs boson?
- Search for neutral long-lived particles using CMS
 - Decay to pairs of displaced electrons or muons
 - → Proton-proton data at $\sqrt{s} = 7 \text{ TeV}$
 - ➡ 4.1 5.1 fb⁻¹ integrated luminosity
 - Arxiv link to public result

University of

RISTOI

Exotic Particle : It should be long-lived -> Long Decay Length

➡ Measure pt of charged particles

- CMS exploits an iterative tracking algorithm
 - First iterations find tracks originating near the primary vertex
 - Final iterations find displaced tracks

- Can reconstruct displaced leptons with impact parameters (d₀) up to ~ 30 cm
 - Efficiency to reconstruct track decreases at larger displacements

5 Apr 2013

🖉 🖌 University of

Displaced Vertex Signature

- Tracks and vertex are displaced fro centre of CMS
 - ➡ Makes analysis almost background free
 - Only need to reconstruct one displaced vertex

CMS \sqrt{s} =7 TeV L=5.1 fb⁻¹

Entries 10³ 10³ • H(1000) → XX(350), 1 pb μ⁺μ H(1000) → XX(350), 1 pb e⁺e⁻ QCD QCD tt 10² 10² **Ζ/**γ* → μμ Z/γ* → ee $Z/\gamma^* \rightarrow \tau\tau$ ww WZ 10 WΖ 10 77 ΖZ Data Data 10⁻¹ 10⁻¹ 10⁻² 10⁻² 10⁻³ 10⁻⁴ 100 200 400 300 500 0 100 300 400 200 \mathbf{O} 500 mass [GeV/c²] mass [GeV/c²] Expected 0.02^{+0.09}-0.02 background Expected 1.38^{+1.78}-1.19 background candidates candidates

 $CMS\sqrt{s}=7$ TeV L=4.1 fb⁻¹

Entries

University of

BRISTOL

Dilepton Mass Spectrum

Look for a narrow resonance in dilepton mass spectrum

Results

- See no significant excess
- Set 95% CL upper limit on $\sigma(H \rightarrow XX) \times B(X \rightarrow I^+I^-)$
 - ➡ Range of H and X masses
- Main systematic uncertainty due to displaced tracking efficiency

Summary

RISTOI

Backup

Online Selection

- Muon channel
 - Two muons reconstructed in muon systems only
 - ➡ No primary vertex constraint
 - ➡ No tracker requirement
 - ➡ pt>30 GeV/c

- Electron channel
 - ➡ Two clustered energy deposits in the ECAL
 - ➡ E_t>38 GeV
 - ➡ No tracker requirement

Detailed Candidate Selection

- Selection cuts on track/leptons
 - → High purity tracks, 6 valid hits, $|\eta| < 2$
 - pt of tracks > 33 GeV (muon) > 41 (electron)
 - → d_0/σ of tracks > 2 (muon), > 3 (electron)
 - Tracker isolation

University of

- Σ_{Pt} < 4 GeV within ΔR < 0.3
- In electron channel, also match track to offline supercluster
- In muon channel, reject back-toback muons and require ΔR between muons >0.2

- Selection cuts on dileptons/X candidates
 - ⇒ Good vertex fit $\chi^2/NDF < 5$
 - No more than one tracker hit in front of vertex
 - Decay length significance (L_{xy}/σ) cut > 5 (muons) > 8 (electrons)
 - Reconstructed candidate momentum collinear with vertex flight direction
 - $\Delta \Phi < 0.2$ (muons) < 0.8 (electrons)

5 Apr 2013

12

Identification of Displaced Vertex

- Select lepton pairs that form a vertex
 - ➡ Our X candidates
- Require tracks and vertex to be displaced from centre of CMS
 - Selection makes analysis almost background free

Candidate Selection (II)

• n-l selection plot for transverse decay length significance (L_{xy} /sigma)

Good separation of signal from background

18 20

 L_{xy}/σ_{xy}

16

Candidate Selection (III)

- Can relax some selection to increase statistics
 - Check agreement between data and background MC

University of

BRISTOL

- Most crucial systematic uncertainty, how well do we understand tracking efficiency for displaced tracks
 - Main method to study: use cosmic muons
 - Cosmic muon leaves a track in the muon systems
 - ➡ Is cosmic also reconstructed in central tracker?
 - Assign 20% systematic uncertainty to account for disagreement between data and MC
- Trigger Efficiency Uncertainty
 - ➡ Use standard tag & probe

University of

- Assign 11% systematic uncertainty in muon channel
- Assign 2.6% systematic uncertainty in electron channel

CONS Provide A constant of the constant of the

Limits

5 Apr 2013

17