

CP violation in the B_s -> $\varphi \varphi$ decay at LHCb

Sean Benson on behalf of the LHCb collaboration

IOP, 8-10 April 2013

Outline

LHCb detector

Phenomenology and New Physics

 B_s -> $\varphi \varphi$ analysis ingredients

Results

New for 2013

LHCb-PAPER-2013-007, arXiv:1303.7125

- LHCb is a forward arm spectrometer (pseudo-rapidity range: $2 < \eta < 5$),
- Accurate decay time resolution through vertex locator (VELO),
- Accurate particle ID provided by RICH detectors.

Why B_s Physics?

Mixing

There could be new physics contributions, that would manifest as new contributions in B_s mixing diagrams

(arXiv:1008.1593)

Large effects are ruled out through existing measurements of B_s ->J/ $\psi \phi$

Decay

New contributions could also appear in penguin diagrams (hep-ph/0007328,

arXiv:1212.6486v1).

Loop suppressed → need large datasets to measure

Now becoming accessible.

Why B_s -> $\varphi \varphi$?

 B_s -> φ is an example of a flavour changing neutral current interaction (FCNC) b->sss => can only occur through penguin diagrams and higher orders.

Measure ϕ_s , defined as the CP violation interference between mixing and decay:

l.e.

$$\phi_{s} = \phi_{M} - 2\phi_{D}$$

 \Rightarrow B_s-> $\varphi \varphi$ is sensitive to new physics in mixing and decay as both Bs and Bs can decay to $\varphi \varphi$.

In Bs->φφ, resulting from a b->ss̄s transition, the SM prediction is 0.00±0.02 rad

Analysis Details

 B_s ->φφ is a P->VV decay => Final state a mixture of CP-even and CP-odd eigenstates \rightarrow need angular analysis to disentangle them.

To obtain greatest sensitivity to CP violation, need to be able to resolve Bs oscillations => requires observation of the B_s decay time.

Therefore analysis requires good understanding of efficiencies as a function of decay time and angular observables:

- Selections such as impact parameter give lower efficiency at short decay times.
- Shape of LHCb detector means high values of $|\cos\theta_i|$ are less efficient.

These are taken from simulation.

Analysis Details

LHCP

- PDF has 15 terms (6 P-wave and 9 S-wave).
- $F(t,\cos\theta_1,\cos\theta_2,\Phi) = \sum_i K_i(t)f_i(\cos\theta_1,\cos\theta_2,\Phi)$, where:

	•		
i	K_i	f_i	
1	$ A_0(t) ^2$	$4\cos^2\theta_1\cos^2\theta_2$	
2	$ A_{ }(t) ^2$	$\sin^2\theta_1\sin^2\theta_2(1+\cos2\Phi)$	
3	$ A_{\perp}^{"}(t) ^2$	$\sin^2\theta_1\sin^2\theta_2(1-\cos2\Phi)$	P-wave (φφ)
4	$Im(A_{\parallel}^{*}(t)A_{\perp}(t))$	$-2\sin^2\theta_1\sin^2\theta_2\sin2\Phi$	
5	$Re(A_{\parallel}^{"}(t)A_{0}(t))$	$\sqrt{2}\sin 2\theta_1\sin 2\theta_2\cos \Phi$	
6	$Im(A_0^*(t)A_{\perp}(t))$	$-\sqrt{2}\sin 2\theta_1\sin 2\theta_2\sin \Phi$	CD over 5 wave (f0f0)
7	$ A_{SS}(t) ^2$	$\frac{4}{9}$	CP-even S-wave (f0f0)
8	$ A_S(t) ^2$	$\frac{4}{3}(\cos\theta_1 + \cos\theta_2)^2$	— CP-odd S-wave (φf0)
9	$Re(A_S^*(t)A_{SS}(t))$	$\frac{\frac{4}{3}(\cos\theta_1 + \cos\theta_2)^2}{\frac{8}{3\sqrt{3}}(\cos\theta_1 + \cos\theta_2)}$	
10	$Re(A_0(t)A_{SS}^*(t))$	$-\frac{8}{3}\cos\theta_1\cos\theta_2$	f0f0– φf0 interference
11	$Re(A_{\parallel}(t)A_{SS}^{*}(t))$	$\frac{4\sqrt{2}}{3}\sin\theta_1\sin\theta_2\cos\Phi$	1.1.5050.1.1.5
12	$Im(A_{\perp}(t)A_{SS}^{*}(t))$	$-rac{4\sqrt{2}}{3}\sin heta_1\sin heta_2\sin\Phi$	φφ-f0f0 interference
13	$Re(A_0(t)A_S^*(t))$	$\frac{8}{\sqrt{3}}\cos\theta_1\cos\theta_2(\cos\theta_1+\cos\theta_2)$	
14	$Re(A_{\parallel}(t)A_{S}^{*}(t))$	$\frac{4\sqrt{2}}{\sqrt{3}}\sin\theta_1\sin\theta_2(\cos\theta_1+\cos\theta_2)\cos\Phi$	
15	$Im(A_{\perp}(t)A_{S}^{*}(t))$	$-\frac{4\sqrt{2}}{\sqrt{3}}\sin\theta_1\sin\theta_2(\cos\theta_1+\cos\theta_2)\sin\Phi$	φφ-φf0 interference

With this, can fit for:

Polarisation fractions A_i , CP-conserving strong phases, δ_i , and CP-violating phase, φ_s

Analysis Ingredients

Example time dependent term:

Flavour-tagging

B_s oscillation frequency

$$\Im(A_{\parallel}(t)^*A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|\{(1-2\omega)e^{-\Gamma_s t}[\sin\delta_1\cos(\Delta m_s t) - \cos\delta_1\sin(\Delta m_s t)\cos\phi_s] - \frac{1}{2}\cos\delta_1(e^{-\Gamma_{\rm H}t} - e^{-\Gamma_{\rm L}t})\sin\phi_s\}$$

B_s decay rates

B_s decay rates ($\Gamma_s = [\Gamma_H + \Gamma_L]/2 \& \Delta \Gamma_s = \Gamma_L - \Gamma_H$): Gaussian constraints to the values measured in the Bs->J/ψφ decay (LHCb-PAPER-2013-002).

Time resolution: Convolve our PDF with Gaussian function of width 40fs, where the width is found from simulation.

B_s oscillation frequency: Gaussian constraint to LHCb value (LHCb-CONF-2011-050)

Flavour-tagging: Opposite side and same-side algorithms used (explained soon).

Analysis Ingredients: Flavour-tagging

Event-by-event incorrect tag probability calibrated mainly from B+->J/ ψ K+ (OS) and B_s->D_s π (SSK) => calibration parameters constrained in fitting.

Total tagging power = $\varepsilon(1-2\omega)^2$ = $(3.20\pm0.48)\%$

Results: Dataset

880 events observed in K⁺K⁻K⁺K⁻ final state using 1.0 fb⁻¹ LHCb data.

Events triggered mainly by looking for good quality tracks consistent with φ mass and exploiting general kinematics of B decays.

Multivariate offline selections use kinematic variables and track quality to separate signal from background.

Low contamination from reflections from B^0 -> ϕK^* due to small width of the ϕ resonance.

Results: Projections on to Observables

- Shown below are data and corresponding fit projected on to each of the phase space observables.
- Can separate fit by CP eigenstate.

Time biasing selections cause low efficiency at short lifetimes

Projections background subtracted and include acceptances

Total

CP-even

CP-odd

S-wave

Results: S-wave Crosscheck

LHCP

Although measured in angular and time dependent fit, also possible to measure S-wave using m_{KK} lineshapes (relativistic Breit-Wigner shape for P-wave, Flatté for S-wave).

=> Do a 2D fit to m_{KK} vs. m_{KK} as a sanity check (ignores interferences)

Results: ϕ_s

LHCb
LHCb

Parameter	Value	$\sigma_{ m stat.}$	$\sigma_{ m syst.}$
$\overline{\phi_s 68 \% \text{ C.L: [rad]}}$	(-2.3)	7, -0.92)	0.22
$ A_0 ^2$	0.329	0.033	0.017
$ A_{\perp} ^2$	0.358	0.046	0.018
$ A_{ m S} ^2$	0.016	$^{+0.024}_{-0.012}$	0.009
$\delta_1 \text{ [rad]}$	2.19	0.44	0.12
$\delta_2 \text{ [rad]}$	-1.47	0.48	0.10
$\delta_{\mathrm{S}} \; [\mathrm{rad}]$	0.65	$+0.89 \\ -1.65$	0.33

The dominant systematic uncertainties arise from time acceptance and S-wave

Statistical likelihood for ϕ_s shows non-parabolic behaviour \rightarrow only

a 68% C.L. is quoted.

Small dataset → Feldman Cousins analysis is used to provide a coverage corrected 68% C.L. including systematic uncertainties of

 ϕ_s in the interval [-2.46,-0.76] rad The p-value of the Standard Model hypothesis is 16%.

Summary

• A first time-dependent tagged analysis of CP violation in the interference between mixing and decay for the B_s -> $\varphi\varphi$ decay yields a 68% C.L of:

[-2.46,-0.76] rad

The p-value of the Standard Model hypothesis is 16%.

• Still 2fb⁻¹ of 2012 LHCb data yet to analyse => eager to see what awaits with the full combined 2011+2012dataset.