W/Z production associated with a H or a Z boson decaying to a $b\bar{b}$ pair

Chiara Debenedetti
The University of Edinburgh

8th-10th April 2013 - IoP HEPP and APP Meeting - Liverpool
Latest public results on the production of a vector boson decaying leptonically produced in association with a Z or a H boson decaying to a b\bar{b} pair.

✧ Motivation
✧ Event selection and analysis strategy
 ✧ Signal and background modeling
✧ Statistical treatment
 ✧ Higgs fit ingredients
 ✧ Validation on VZ(Z\rightarrow b\bar{b})
 ✧ VH(H\rightarrow b\bar{b}) results
✧ Summary and conclusions

Analysis performed on datasets:
✧ 13.0 fb\(^{-1}\) for \(\sqrt{s}=8\) TeV
✧ 4.7 fb\(^{-1}\) for \(\sqrt{s}=7\) TeV
Motivation

Higgs mechanism explains **EW Symmetry breaking**
In SM coupling to the **scalar** Higgs field, vector bosons and fermions acquire mass

Several Production channels:

Other production mechanisms cannot be exploited because of QCD background ≈9 order of magnitudes larger

Method used in $H\rightarrow b\bar{b}$ searches, look for associated production with:

- W/Z and exploit **leptonic** vector bosons decays
- Exploit distinct signature in the detector.

$H\rightarrow b\bar{b}$ observation → test of direct coupling with fermions.
Event selection strategy

Three separate channels exploiting all possible leptonic V decays
(naming convention: lepton = charged lepton):

\[ZH \rightarrow v\bar{v}b\bar{b} \text{ - “0 lepton”} \]
\[WH \rightarrow lvb\bar{b} \text{ - “1 lepton”} \]
\[ZH \rightarrow l^+l^-b\bar{b} \text{ - “2 lepton”} \]

0-lepton channel has significant contribution from lvb\bar{b} events with undetected charged leptons

Tag signature via V→leptons

- **0-lepton** → high \(E_t^{miss} \)
- **1-lepton** → identify W:
 - 1 high-\(p_T \) lepton + \(E_t^{miss} \) + W \(m_T \) cut
- **2-lepton** → identify Z:
 - 2 high \(p_T \) leptons + Z mass cut

\[H \rightarrow b\bar{b} \text{ - jet selection} \]

- 2 or 3 jets final states
- 2 b-tagged jets
- b-tagging 70% efficient with 1% fake rate
WH candidate

a WH→μνb̄b event candidate

Run: 207620
Event: 101402870
Date: 2012-07-29
Time: 00:05:11 UTC
Analysis strategy

Strategy:
look for excess in $m_{b\bar{b}}$ (di-b-jet system invariant mass) distribution

- Exploit growth of S/\sqrt{B} as a function of recoiling Vp_t
Analysis strategy

Strategy:
look for excess in $m_{b\bar{b}}$
(di-b-jet system invariant mass) distribution

△ Exploit growth of S/\sqrt{B} as a function of recoiling $V \ p_t$
⇒ divide $m_{b\bar{b}}$ in bins of p_t^V

Chiara Debenedetti - ATLAS VH($H\rightarrow bb$), VZ($Z\rightarrow bb$) - 09.04.2013 - IoP meeting, Liverpool
Signals and backgrounds

Background-dominated analysis
Rely on different techniques to estimate shape and normalisation

- QCD multijet → data-driven
- Diboson → MC prediction
- V+I/c → shape from MC and normalisation from data (template fit to extract V+jets flavor fraction)
- V+b,top → shape from MC and normalisation from data (profile likelihood fit)

Examples of background composition

0 lepton - W+jets, Z+jets, top
1 lepton - W+jets, top
2 lepton - Z+jets
Statistical treatment - definitions

- **Profile likelihood fit** gives interpretation of result
- **Aim**: understand how much the data (dis)agree with the proposed model
- **Hypothesis testing**: signal+background hp vs null (background only) hp
Statistical treatment - definitions

- Profile likelihood fit gives interpretation of result
- Aim: understand how much the data (dis)agree with the proposed model
- Hypothesis testing: signal+background hp vs null (background only) hp

Each bin can be represented by a Poisson likelihood:

\[L(\mu) = \frac{(\mu s + b)^n}{n!} e^{-(\mu s + b)} \]

Useful definitions:

- Parameter of interest \((\mu)\) - specifies difference between null \((\mu=0)\) and test hypothesis \((\mu=1)\)
Statistical treatment - definitions

- **Profile likelihood fit** gives interpretation of result
- **Aim**: understand how much the data (dis)agree with the proposed model
- **Hypothesis testing**: signal+background hp vs null (background only) hp

\[
L(\mu, \theta) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i)^{n_i}}{n_i!} e^{-(\mu s_i + b_i)}
\]

- **Profile likelihood fit**
- **Aim**: understand how much the data (dis)agree with the proposed model
- **Hypothesis testing**: signal+background hp vs null (background only) hp

Useful definitions:
- **Parameter of interest** \((\mu)\) - specifies difference between null \((\mu=0)\) and test hypothesis \((\mu=1)\)
- **Nuisance parameters** \((\theta)\) - all additional parameters the model depends on (systematic errors)
Profile likelihood ratio

\[\lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})} \]

\(\lambda \geq 0 \leq 1 \)

- Numerator: **conditional** fit (\(\mu \) is not determined by the fit - fixed)
- Denominator: **unconditional** fit (\(\mu \) is a parameter of the ML fit)

Nuisance parameters for conditional and unconditional fit
Profile likelihood ratio

\[\lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})} \]

- Numerator: conditional fit (\(\mu \) is not determined by the fit - fixed)
- Denominator: unconditional fit (\(\mu \) is a parameter of the ML fit)

Define test statistic: \[t_\mu = -2 \ln \lambda(\mu) \] (Log Likelihood Ratio)

Evaluated for 3 cases:
- \(n_i \) = background hp \(\rightarrow \) distribution of \(t_\mu \)
- \(n_i \) = signal + background hp \(\rightarrow \) distribution of \(t_\mu \)
- \(n_i \) = observed data \(\rightarrow \) one value

\[L(\mu, \theta) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i)^{n_i}}{n_i!} e^{-(\mu s_i + b_i)} \]
Profile likelihood ratio

\[\lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})} \]

\(\text{NB: } 0 \leq \lambda \leq 1 \)

- Numerator: conditional fit (\(\mu \) is not determined by the fit - fixed)
- Denominator: unconditional fit (\(\mu \) is a parameter of the ML fit)

Define test statistic: \(t_\mu = -2 \ln \lambda(\mu) \) (Log Likelihood Ratio)

Evaluated for 3 cases:
- \(n_i = \text{background hp} \rightarrow \text{distribution of } t_\mu \)
- \(n_i = \text{signal+background hp} \rightarrow \text{distribution of } t_\mu \)
- \(n_i = \text{observed data} \rightarrow \text{one value} \)

\[L(\mu, \theta) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i)^{n_i}}{n_i!} e^{-(\mu s_i + b_i)} \]

P-value: probability for a test to find a more background-like result than the observed data

\(\text{CL}_S = p_{S+B}/(1-p_B) \)

Confidence interval for limit calculation
Exclusion and discovery

Exclusion (at 95% CL)
aka how to obtain the “brazilian band” plot:

- **expected** limit: calculate CLS using median of null hypothesis (B)
- **observed** limit: CLS calculated using measured data
- CLS < 0.05 => reject test hypothesis at 95% confidence Level
- to calculate limit, \(\mu \) is varied to satisfy CLS = 0.05
Exclusion and discovery

Exclusion (at 95% CL)

aka how to obtain the “brazilian band” plot:

- **expected** limit: calculate CL_S using median of null hypothesis (B)
- **observed** limit: CL_S calculated using measured data
- $\text{CL}_S < 0.05$ => reject test hypothesis at 95% confidence Level
- to calculate limit, μ is varied to satisfy $\text{CL}_S = 0.05$
Exclusion and discovery

Exclusion (at 95% CL)

aka how to obtain the “brazilian band” plot:

- **expected** limit: calculate CL_s using median of null hypothesis (B)
- **observed** limit: CL_s calculated using measured data
- CL_s<0.05 => reject test hypothesis at 95% confidence Level
- to calculate limit, μ is varied to satisfy CL_s=0.05

Discovery p_0(=p_B) and gaussian significance (σ):

- **expected** p_0 calculated using median of test hypothesis
- **observed** p_0 using observed data
- nσ=distance from median of null hypothesis
 - 3σ → evidence
 - 5σ → discovery
Higgs fit ingredients

Input to VH(bb) profile likelihood fit: \(m_{bb}\) distributions split into **categories**

Discriminant variables:
- number of leptons
- number of jets
- \(V p_T\) intervals

Different regions of \(S/\sqrt{B}\)

Total: 16 categories + control regions
\[\Rightarrow\] complex fit

Validation needed!!

Use known signal to cross-check:
\[VZ(Z\rightarrow bb)\]
VZ(b\bar{b}) observation

- Similar signature to VH(b\bar{b}) and ~5 times larger cross section
- Excellent way to validate background estimate and Higgs search strategy
- Performed profile likelihood fit with a mixture of WZ(b\bar{b}) and ZZ(b\bar{b}) as signal
- WH and ZH with m_H=125 GeV considered as backgrounds

Observed VZ(b\bar{b}) signal with

\[\hat{\mu} = 1.09 \pm 0.20\text{(stat)} \pm 0.22\text{(syst)} \]

and 4\sigma significance
\textbf{VH(H→b\bar{b}) results}

- Observed limit at $m_H=125$ GeV: $1.8 \times \text{SM}$ (expected 1.9)
- Signal strength $\hat{\mu}=-0.4\pm0.7\,(\text{stat})\pm0.8\,(\text{syst})$
- Observed ρ_0: 0.64 (expected 0.15)
- Excluded a Higgs of mass ~ 110 GeV

Reached sensitivity more than 2 times that of previous publication (Phys. Lett. B 718 (2012) 369-390) 1.8 vs 4.6 obs at $m_H=125$ GeV
Summary and conclusions

✦ Looking for the Higgs in difficult $H \rightarrow b\bar{b}$ topology
 ↓
 highest BR for $m_H \approx 125\text{GeV}$

✦ Exploit **associated production with a vector boson**
 \rightarrow tag on leptonic final states

✦ Perform complicated **profile likelihood fit** to test signal+background hp

✦ Search method validated on $VZ(Z \rightarrow b\bar{b}) \Rightarrow 4\sigma$ observation
Summary and conclusions

- Looking for the Higgs in difficult $H \rightarrow b \bar{b}$ topology
 - highest BR for $m_H \approx 125\text{GeV}$

- Exploit associated production with a vector boson
 → tag on leptonic final states

- Perform complicated profile likelihood fit to test signal+background hp

- Search method validated on $VZ(Z \rightarrow b \bar{b}) \Rightarrow 4\sigma$ observation

- Excluded a Higgs of $m=110\text{GeV}$

- Observed (expected) a 95% CL limit of $1.8\times 1.9 \times \text{SM}$
..thanks a lot for your attention!!
Backup
The ATLAS detector

Inner detector
- for $\eta=0$, track has typically 3 Pixel, 8 SCT and 30 TRT hits
- magnetic field (~2 T) produced by solenoid
- coverage: $|\eta|<2.5$ (2.0 for TRT)
- resolution: $\sigma(p_t)/p_t=0.05\%\oplus1\%$

Calorimeters
- Pb/LAr accordion structure for EM
- provides e/γ energy measurement with $\sigma/E\sim10%/\sqrt{E}$(GeV)$\oplus0.7\%$
- Iron scintillator tiles for hadronic
- provides jet and E_{t}^{miss} measurement with $\sigma/E\sim50%/\sqrt{E}$ (GeV)$\oplus3\%$
- Forward calorimeter: FCAL covers up to $|\eta|<4.9$

Muon spectrometer
- coverage: $|\eta|<2.7$
- magnetic field (~0.5 T) produced by toroids
- $\sigma(p_t)/p_t=10\%$ for $p_t=1$TeV
Higgs $\sigma \times BR @ 8\text{TeV}$

$\sqrt{s} = 8\text{TeV}$

$\sigma \times BR [\text{pb}]$

$M_H [\text{GeV}]$

100 150 200 250

10

10^{-1}

10^{-2}

10^{-3}

10^{-4}

$\tau^+ \tau^-$

$VBF H \rightarrow \tau^+ \tau^-$

$WH \rightarrow \ell^+ \nu p\bar{p}$

$WW \rightarrow \ell^+ \nu q\bar{q}$

$WW \rightarrow \ell^+ \ell^- \nu \nu$

$ZZ \rightarrow \ell^+ \ell^- q\bar{q}$

$ZZ \rightarrow \ell^+ \ell^- \nu\nu$

$ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

$ZH \rightarrow \ell^+ \nu b\bar{b}$

$\ell = e, \mu$

$\nu = \nu_e, \nu_\mu, \nu_\tau$

$q = \text{udscb}$

$ttH \rightarrow ttbb$
Jet clustering anti-kt algorithm

From topoclusters to jets
\{t_i\} \rightarrow \text{reconstruction algorithm} \rightarrow \{j_k\}

\textbf{Anti-kt algorithm}

- default for ATLAS jet reconstruction
- recursive algorithm - combines sequentially pairs of constituents
- combination dependent on p_t, (η, ϕ) distance
- clustering starts from most energetic constituents
- advantage: high-p_t anti-kt jets have regular shapes guaranteeing stability against pile-up
b-tagging in ATLAS

- Algorithms to identify heavy flavour content in reconstructed jets
- Impact parameter of tracks in jet
 - **IP3D** uses track weights based on longitudinal and transverse IP significance
- Displaced secondary vertex
 - **SV1** reconstructs inclusive displaced vertex
 - **JetFitter** reconstructs multiple vertices along implied b-hadron line of flight
 - Cascade decay topologies
- Advanced NN based algorithms
 - **JetFitterCombNN**: IP3D+JetFitter
 - **MV1**: IP3D+JetFitterCombNN+SV1

MC calibration results illustrated with **MV1 @ 70% b-jet efficiency**

Credits to: Mark Tibbets
b-tagging in ATLAS - c mistag rate

ATLAS Preliminary

- MV1
- JetFitterCombNN
- JetFitterCombNNc
- IP3D+SV1
- SV0

Calibrated on $t\bar{t}$ events at 7 TeV

$t\bar{t}$ simulation, \sqrt{s}=7 TeV

$p_T^{\text{jet}} > 15$ GeV, $|\eta^{\text{jet}}| < 2.5$
Flavour fit

- Maximum likelihood fit for jet flavour fraction evaluation in V+jets background
- Aim: calculation of W/Z+l/c scale factors for normalisation
- Performed on 12 regions (with different Vjets composition and top enriched)

\[V\text{jets} = \alpha_1 \times Wl + \alpha_2 \times Wc + \alpha_3 \times Wb + \beta_1 \times Zl + \beta_2 \times Zc + \beta_3 \times Zb \]

Want to evaluate \(\alpha_i \) and \(\beta_i \), \(\alpha_3 \) and \(\beta_3 \) will be re-calculated in the profile likelihood fit

Example input regions

\(\int L \, dt = 13.0 \, fb^{-1}, \sqrt{s} = 8 \, \text{TeV} \)
1 Lepton, Pre-Tag, 2 Jets, \(p_T > 0 \)

Top enriched region →

1 b-tag region ←
p_t^V dependence and final fit

- Steeper fall for background in p_t^V distribution in data than MC ⇒ good news!
- Need to correct for this in the MC. Affects both V+jets and top.

Corrections applied per p_t^V bin:
- V+jets ranging between 5 and 10%
- top ~15%

In final fit 16 signal region categories and top control regions

- Profile likelihood fit $L(\mu, \theta)$ to signal strength $\mu = \sigma/\sigma_{SM}$
- θ represent statistical and systematic nuisance parameters
- $W/Z+b$ and top normalisations left floating in the fit

Floating backgrounds scale factors:

<table>
<thead>
<tr>
<th></th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>1.10 ± 0.14</td>
<td>1.29 ± 0.16</td>
</tr>
<tr>
<td>$Z+b$</td>
<td>1.22 ± 0.20</td>
<td>1.11 ± 0.15</td>
</tr>
<tr>
<td>$W+b$</td>
<td>1.19 ± 0.23</td>
<td>0.79 ± 0.20</td>
</tr>
</tbody>
</table>
Systematic errors = nuisance parameters Θ

Different type of systematic \Rightarrow different statistical treatment

Shape systematic
Gaussian distributed
Systematic variation is different for each bin of $m_{b\bar{b}}$ distribution but is correlated \Rightarrow if one bin varies, the others vary as well

Normalisation systematic
Log-normal distributed
Systematic variation is the same for each bin of $m_{b\bar{b}}$ distribution and is correlated \Rightarrow if one bin varies, the others vary as well

Floating normalisation
No prior
Normalisation in bin left free to float within very loose constraints. Allows to calculate normalisations for top and W$b\bar{b}$ backgrounds

Statistical parameters
Poisson distributed
MC statistical uncertainty per bin. Bin-by-bin uncorrelated. Mean of Poisson is number of events per bin - less than 5% statistical uncertainty per bin \rightarrow 400 events \rightarrow gaussian
Systematic uncertainties

- Enter in the fit as nuisance parameters both for signal and backgrounds
- Shrunken considerably by profile likelihood fit
- Illustrate **values after cuts** in tables

Background

<table>
<thead>
<tr>
<th>Uncertainty [%]</th>
<th>0 lepton</th>
<th>1 lepton</th>
<th>2 lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-tagging</td>
<td>6.5</td>
<td>6.0</td>
<td>6.9</td>
</tr>
<tr>
<td>c-tagging</td>
<td>7.3</td>
<td>6.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Light tagging</td>
<td>2.1</td>
<td>2.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Jet/Pile-up/E_T^{miss}</td>
<td>20</td>
<td>7.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Lepton</td>
<td>0.0</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Top modelling</td>
<td>2.7</td>
<td>4.1</td>
<td>0.5</td>
</tr>
<tr>
<td>W modelling</td>
<td>1.8</td>
<td>5.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Z modelling</td>
<td>2.8</td>
<td>0.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Multijet</td>
<td>0.6</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>8.3</td>
<td>3.6</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Signal

<table>
<thead>
<tr>
<th>Uncertainty [%]</th>
<th>0 lepton</th>
<th>1 lepton</th>
<th>2 lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-tagging</td>
<td>8.9</td>
<td>9.0</td>
<td>8.8</td>
</tr>
<tr>
<td>Jet/Pile-up/E_T^{miss}</td>
<td>19</td>
<td>25</td>
<td>6.7</td>
</tr>
<tr>
<td>Lepton</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>$H \rightarrow bb$ BR</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>$VH p_T$-dependence</td>
<td>5.3</td>
<td>8.1</td>
<td>7.6</td>
</tr>
<tr>
<td>VH theory PDF</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>VH theory scale</td>
<td>1.6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Statistical</td>
<td>4.9</td>
<td>18</td>
<td>4.1</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>34</td>
<td>16</td>
</tr>
</tbody>
</table>
Final plots - 0 lepton
Final plots - 1 lepton

ATLAS Preliminary

\[\int L \, dt = 13.0 \, fb^{-1}, \ (\sqrt{s} = 8 \, TeV) \]
1 Lepton 2 Jets, \(p_T^W < 50 \, GeV \)

ATLAS Preliminary

\[\int L \, dt = 13.0 \, fb^{-1}, \ (\sqrt{s} = 8 \, TeV) \]
1 Lepton 2 Jets, \(50 < p_T^W < 100 \, GeV \)

ATLAS Preliminary

\[\int L \, dt = 13.0 \, fb^{-1}, \ (\sqrt{s} = 8 \, TeV) \]
1 Lepton 2 Jets, \(100 < p_T^W < 150 \, GeV \)

ATLAS Preliminary

\[\int L \, dt = 13.0 \, fb^{-1}, \ (\sqrt{s} = 8 \, TeV) \]
1 Lepton 2 Jets, \(p_T^W > 200 \, GeV \)

ATLAS Preliminary

\[\int L \, dt = 13.0 \, fb^{-1}, \ (\sqrt{s} = 8 \, TeV) \]
1 Lepton 2 Jets, \(150 < p_T^W < 200 \, GeV \)
Final plots - 2 lepton
Final event yields

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-lepton, 2 jet</td>
<td>0.8 0.2 0.2 2.9 2.6</td>
<td>0.3 0.4 0.1 1.1 1.1</td>
<td>0.0 0.0 0.0 4.7 6.8</td>
</tr>
<tr>
<td>0-lepton, 3 jet</td>
<td>0.8 0.2 0.2 1.1 1.1</td>
<td>0.4 0.1 0.1 3.6 3.6</td>
<td>0.0 0.0 0.0 4.0 1.5</td>
</tr>
<tr>
<td>1-lepton</td>
<td>10.6 12.9 7.5 3.6 3.6</td>
<td>3.6 3.6 3.6 3.6 3.6</td>
<td>3.6 3.6 3.6 3.6 3.6</td>
</tr>
<tr>
<td>2-lepton</td>
<td>4.7 6.8 4.0 1.5 1.4</td>
<td>4.0 1.5 1.4 4.0 1.5</td>
<td>4.0 1.5 1.4 4.0 1.5</td>
</tr>
</tbody>
</table>

Table 6: The expected numbers of signal and background events for the 8 TeV data after the region in Table 6.

- **ZH**: 2.9 2.1 2.6 0.8 0.8 1.1 0.3 0.4 0.1 0.0 0.0 4.7 6.8 4.0 1.5 1.4
- **WH**: 0.8 0.4 0.4 0.2 0.2 0.2 10.6 12.9 7.5 3.6 3.6 0.0 0.0 0.0 0.0 0.0

Calculation of Cross Sections

The expected number of signal and background events in each bin are from Table 6. The test statistic T is then constructed according to the profile likelihood: $T = \frac{1}{2} (\hat{\theta} - \theta^0)^T \Sigma^{-1} (\hat{\theta} - \theta^0)$, where $\hat{\theta}$ is the estimated parameter, θ^0 is the true parameter, and Σ is the covariance matrix.

The total expected background and its uncertainty is included. The resulting scale factors from the fit are shown in Table 6.

Calculated in range 0<m_{bb}/GeV<250

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-lepton, 2 jet</td>
<td>0.8 0.2 0.2 2.9 2.6</td>
<td>0.3 0.4 0.1 1.1 1.1</td>
<td>0.0 0.0 0.0 4.7 6.8</td>
</tr>
<tr>
<td>0-lepton, 3 jet</td>
<td>0.8 0.2 0.2 1.1 1.1</td>
<td>0.4 0.1 0.1 3.6 3.6</td>
<td>0.0 0.0 0.0 4.0 1.5</td>
</tr>
<tr>
<td>1-lepton</td>
<td>10.6 12.9 7.5 3.6 3.6</td>
<td>3.6 3.6 3.6 3.6 3.6</td>
<td>3.6 3.6 3.6 3.6 3.6</td>
</tr>
<tr>
<td>2-lepton</td>
<td>4.7 6.8 4.0 1.5 1.4</td>
<td>4.0 1.5 1.4 4.0 1.5</td>
<td>4.0 1.5 1.4 4.0 1.5</td>
</tr>
</tbody>
</table>

Data

- **Total Bkg.**: 361 127 98 164 63 42 3810 4310 1730 297 138 1500 1770 665 97 72
- **Data**: 342 131 90 175 65 32 3821 4301 1697 297 132 1485 1773 657 100 69

Chiara Debenedetti - ATLAS VH(H→bb), VZ(Z→bb) - 09.04.2013 - IoP meeting, Liverpool
Results for 7 and 8 TeV datasets

Result of profile likelihood fit for 7 and 8 TeV dataset separately

$\bar{s} = 7$ TeV, $\int L dt = 4.7$ fb$^{-1}$

$\bar{s} = 8$ TeV, $\int L dt = 13.0$ fb$^{-1}$

$\mu_{\text{hat}} = -2.7 \pm 1.1$ (stat) ± 1.1 (syst)

$\mu_{\text{hat}} = 1.0 \pm 0.9$ (stat) ± 1.1 (syst)
VZ(\(b\bar{b}\)) - 8TeV channel breakdown

ATLAS Preliminary

Two Lepton

- WZ+ZZ
- ZH 125 GeV
- Bkgd Uncert.
- Data - Bkgd

One Lepton

- WZ+ZZ
- WH 125 GeV
- ZH 125 GeV
- Bkgd Uncert.
- Data - Bkgd

Zero Lepton

- WZ+ZZ
- WH 125 GeV
- ZH 125 GeV
- Bkgd Uncert.
- Data - Bkgd