Measurement of the isospin asymmetry in $B \to {\cal K}^{(*)} \mu^+ \mu^- \mbox{ decays}$

2013 IOP meeting: HEPP & APP

Patrick Owen¹ on behalf of the LHCb collaboration

 $9^{\rm th}$ April 2013

- A I I I A I I I I

¹patrickowen22@gmail.com

Outline

Introduction

- Rare decays and new physics
- Isospin asymmetry of $B \rightarrow K^{(*)} \mu^+ \mu^-$.
- Analysis
- Results [JHEP 1207:133, 2012]

New physics through rare decays

- Decays discussed today are flavour changing neutral current transitions.
- Forbidden at tree level in the SM, and must proceed through penguin/box diagrams.

• New particles can 'enter into the loop' and add possible diagrams, altering observables.

• Measurements usually depend on the 4-momentum transferred to the two muons, q^2 .

Isospin asymmetry in $B \rightarrow K^{(*)} \mu^+ \mu^-$ decays

New physics through rare decays

- Rare decays NP searches complementary to direct approach:
 - Probe particle masses beyond \sqrt{s} .
 - Model independant interpretation (Wilson Coefficients)
 - Study gauge structure of new physics.

• For example, new physics with electromagnetic gauge structure must be $>\sim$ 50 TeV for naive $\mathcal{O}(1)$ flavour violating couplings [JHEP 1208:121, 2012].

LHCb

- LHCb is a heavy flavour experiment situated at the LHC.
- Hadronic environment is tough, but make up for it due to huge heavy flavour cross-section at high energies.
- Good momentum resolution and particle identification crucial.
- Results presented today use 1 fb⁻¹ of integrated luminosity the 2011 dataset. Have another 2 fb⁻¹ from 2012 running.

Isospin asymmetry of $B \rightarrow K^{(*)} \mu^+ \mu^-$ decays

The isospin asymmetry of $B \to K^{(*)}\mu^+\mu^-$, A_I , is defined as:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

- *A_I* expected to be *O*(1%) in the SM
 [JHEP 0301:074,2003],[JHEP 1302:010,2013].
- In 2009, BABAR measured a surprising 3.9 σ deviation from zero at low q² [Phys. Rev. Lett. 102, 091803].
- Now significance down to $\sim 2 \sigma$ and only in the $B \rightarrow K \mu^+ \mu^-$ mode.

Isospin asymmetry analysis

• Analysis boils down to branching fraction measurements of 4 decays:

- $B^+ \rightarrow (K^{*+} \rightarrow K^0_{
 m s} \pi^+) \mu^+ \mu^-$
- $B^0 \rightarrow (K^0 \rightarrow K^0_{
 m S}) \mu^+ \mu^-$
- $B^0 \rightarrow (K^{*0} \rightarrow K^+ \pi^-) \mu^+ \mu^-$
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- $K^0_{
 m S}$ mesons are reconstructed through the $K^0_{
 m S} o \pi^+\pi^-$ decay mode.
- Do not consider decays involving a π^0 or $K^0_{\rm L}$
- K_s^0 channels have lower reconstruction efficiency and visible branching fraction than K^+ channels.

Isospin asymmetry analysis

 Split data into categories depending on whether the K⁰_S daughters leave hits in the vertex detector or not (long (L) and down (D)).

- Each decay is normalised to the corresponding $B \rightarrow (J/\psi \rightarrow \mu^+\mu^-) K^{(*)}$ decay, which have the identical final state.
- These normalisation decays proceed at tree level $o \mathcal{O}(100)$ times more common than the signal.

Selection

- Reduce combinatorial background using kinematic, geometric and particle identification (PID) information.
- Use multivariate techniques to boost sensitivity.
- Consider exclusive backgrounds and use PID/kinematics to reduce them neglible after selection.

Acceptance correction

- Correct for acceptance effects due to geometry, trigger, reconstruction & selection.
- Bin this acceptance in q^2 .
- $B \rightarrow (J/\psi \rightarrow \mu^+ \mu^-) K^{(*)}$ decays are used to normalise each decay which simplifies systematic uncertainties.

$${\cal B}(B^0
ightarrow K^0 \mu^+ \mu^-)$$

Signal yields determined using unbinned extended maximum likelihood fits.

60-70 signal candidates for the $K_{\rm s}^0$ channels.

IOP 2013

$\mathrm{dBF}/q^2~(B^0\! ightarrow K^0\mu^+\mu^-)$

- Branching fraction results, errors are stat + syst.
- There is a deficit of $B^0 \rightarrow K^0 \mu^+ \mu^-$ signal in the q^2 regions which are not adjacent to the charmonium resonances.

SM predictions based on [JHEP 1201:107, 2012] $(B^+ \rightarrow K^{*+}\mu^+\mu^-)$ and [JHEP 1107:067,2011] $(B^0 \rightarrow K^0\mu^+\mu^-)$.

Isospin asymmetry of $B \rightarrow K^* \mu^+ \mu^-$

- A_I for $B \rightarrow K^* \mu^+ \mu^-$ consistent with zero, as predicted by the SM.
- $A_I (B^0 \to K^* \gamma) = 0.07 \pm 0.03.$
- All experimental results agree with each other.

BELLE: [Phys. Rev. Lett. 103, 171801], BABAR: [Phys. Rev. D86, 032012], CDF: [CONF note 108xx]

Isospin asymmetry of $B \rightarrow K \mu^+ \mu^-$

- A_I for $B \to K \mu^+ \mu^-$ tends to sit below the SM prediction, due to the deficit of $B^0 \to K^0 \mu^+ \mu^-$ shown on the previous slide.
- LHCb measurements alone are over 4σ from zero.
- Nearly all the measurements of A₁ are negative see [HFAG combination] .

BELLE: [Phys. Rev. Lett. 103, 171801], BABAR: [Phys. Rev. D86, 032012], CDF: [CONF note 108xx]

- LHCb measurement of the isospin asymmetry in $B \rightarrow K \mu^+ \mu^-$ decays is over 4σ away from zero (~ SM expectation).
- No physics model proposed yet can explain this result.
- Looking forward to updating to the full 3 fb⁻¹ dataset where we expect to halve the statistical errors.

• • = • • = • = •

Charmonium resonances

• $B \rightarrow (J/\psi \rightarrow \mu^+ \mu^-) K^{(*)}$ and $B \rightarrow \psi(2S)h$ are irreducible backgrounds and are ~ 100 and 10 times more common than signal.

• Regions (a) due to FSR, (b) due to mis-reconstruction and (c) due to partially reconstructed background.