

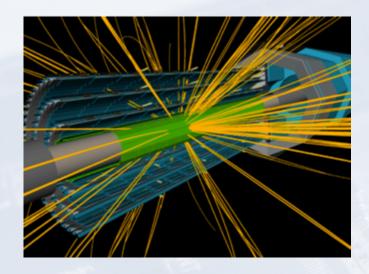
# ATLAS Phase-II High Luminosity UK Planar Pixel Sensors


### **Dean Forshaw**

Supervisors: Gianluigi Casse, Phillip Allport

On behalf of the UK ATLAS Pixel Upgrade group







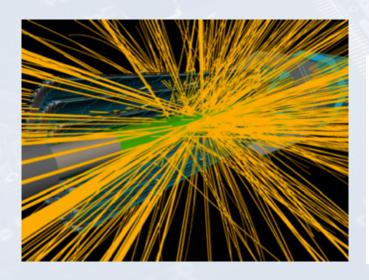


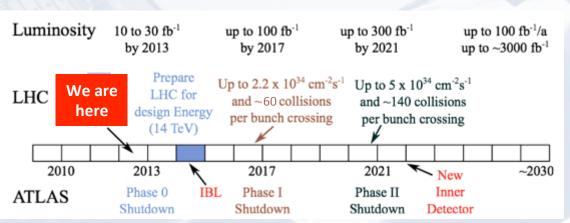



# Introduction



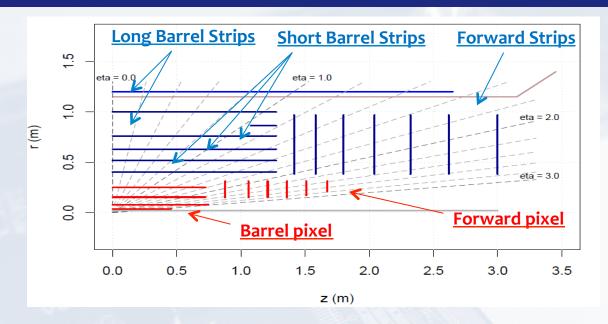
#### Luminosity upgrade to LHC driven by


Desire to reduce statistical uncertainties


Desire to increase search for new physics at higher energy via lower probability events

### Luminosity increase by an order of magnitude

Corresponding increase in occupancy(depends on luminosity leveling)


Radiation damage to a maximum of  $2 \cdot 10^{16}$  1MeV  $n_{eq}/cm^2$ 







# Phase-II ATLAS ITk baseline layout



#### 4 pixel barrel layers

- Radius from 39 mm to 250 mm
- Z: ±449 mm to ±694 mm (outer 2 layers)

#### 6 Pixel disks

- R<sub>inner</sub> = 150 mm
- R<sub>outer</sub> = 315 mm
- Z: 820 mm to 1890 mm

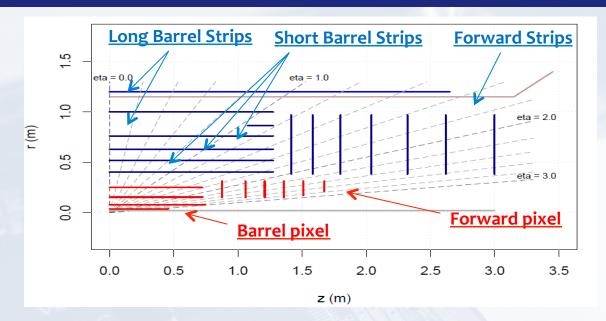
### 2 outer Pixel Barrel layers / Disks

Sensor

planar n-in-p 150 μm

Pixel size 50  $\mu$ m x 250  $\mu$ m ROC (ReadOut Chip) thickness 150  $\mu$ m ToT (Time over threshold) = 4 bits 2x2 (Quad) and 2x3 (Hex) chip modules Data rates of 640 Mbit/s per module

### 2 Inner Pixel Barrel layers


Sensors

PPS and 3D – Diamond, n-in-n/n-in-p silicon 150 μm silicon/diamond or thinner

- Pixel size 25 μm x 150 μm
- ROC (ReadOut Chip) thickness 150 μm
- ToT (Time over Threshold) = 0-8 bits
- 2x1 and 2x2 chip modules
- 2x2 sensor = 33.9 mm x 40.6 mm
- Data rate as high as 2 Gbit/s per module



# Phase-II ATLAS ITk baseline layout



#### 4 pixel barrel layers

- Radius from 39 mm to 250 mm
- Z: ±449 mm to ±694 mm (outer 2 layers)

#### 6 Pixel disks

- $R_{inner} = 150 \text{ mm}$
- R<sub>outer</sub> = 315 mm
- Z: 820 mm to 1890 mm

### 2 outer Pixel Barrel layers / Disks

Sensor

planar n-in-p 150 μm

Pixel size 50 μm x 250 μm

ROC (ReadOut Chip) thickness 150  $\mu m$ 

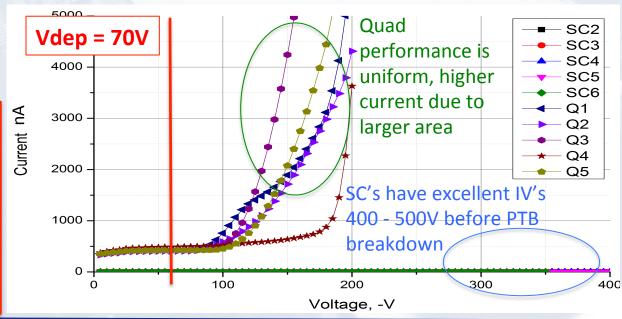
ToT = 4 bits

2x2 (Quad) and 2x3 (Hex) chip modules Data rates of 640 Mbit/s per module

### 2 Inner Pixel Barrel layers

Sensors

PPS and 3D – Diamond, n-in-n/n-in-p silicon 150 μm silicon/diamond or thinner


- Pixel size 25 μm x 150 μm
- ROC (ReadOut Chip) thickness 150 μm
- ToT = 0-8 bits
- 2x1 and 2x2 chip modules
- 2x2 sensor = 33.9 mm x 40.6 mm
- Data rate as high as 2 Gbit/s per module



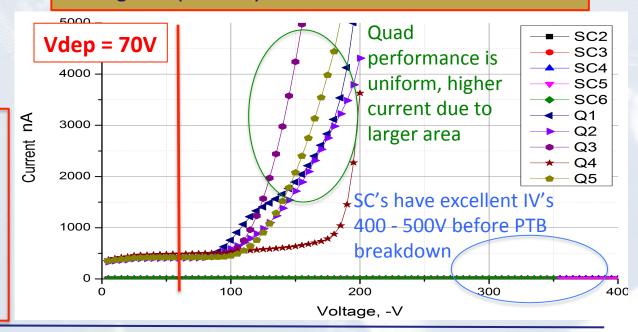
# **Sensors and ROC**

- Sensors produced by Micron Semiconductors LTD based in Worthing, UK
- ATLAS IBL FE-I4 ROC used
- General silicon resistivity used  $\sim 10 \text{k}\Omega$ ,  $300 \mu\text{m}$  thick
- Single and Quad FE-I4 compatible sensors
   Vdep = 70V
- All sensors show reduced current after flip chipping by a factor of 5-10 times less than on die IV measurements, Punch Through Bias is bypassed after bump bonding








# **Sensors and ROC**

- Sensors produced by Micron Semiconductors
   LTD based in Worthing, UK
- ATLAS IBL FE-I4 ROC used
- General silicon resistivity used  $\sim 10 \text{k}\Omega$ ,  $300 \mu\text{m}$  thick
- Single and Quad FE-I4 compatible sensors
   Vdep = 70V
- All sensors show reduced current after flip chipping by a factor of 5-10 times less than on die IV measurements, Punch Through Bias is bypassed after bump bonding

Quad sensor on rigid test board has leakage current of ~80nA with all four ROC's powered, with sensor at -100V

On die wafer IV measurements at -100V are around 500nA

The cause is high bias dot density for pre bump bond testing – required by ATLAS





# Non-standard designs for Phase-II

Liverpool CERN Pixel V wafer - Test vehicle for different layouts and structures. All compatible with FE-I4

#### **Disks**

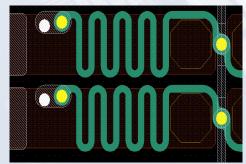
Square pixels may be an advantage for tracking

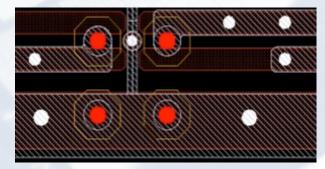
#### Large radius use strips

Lower position resolution requirements Lower power and cost

#### Long large area implants


Turn off some pixels to save cost Lower density flip-chip to reduce cost


Bias dot optimization to increase detection


efficiency after high radiation dose

#### Poly-silicon bias structures

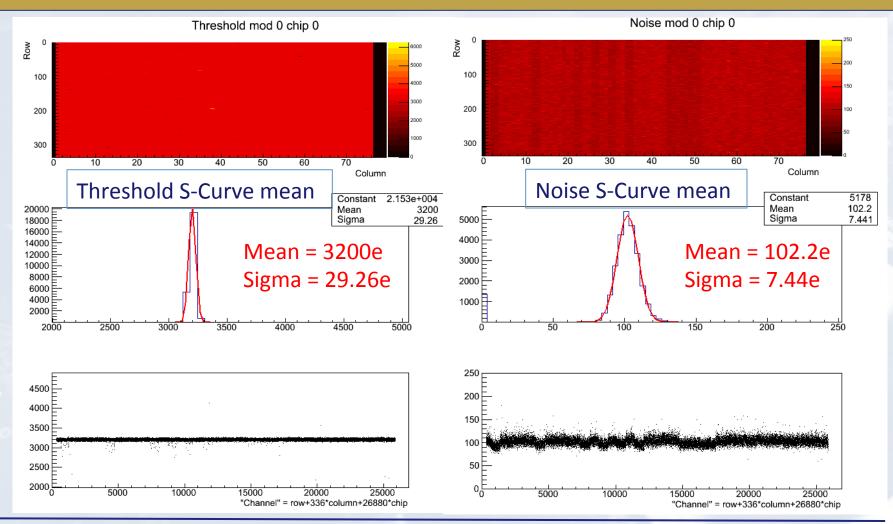
Remove bias dot completely AC couple detectors possible



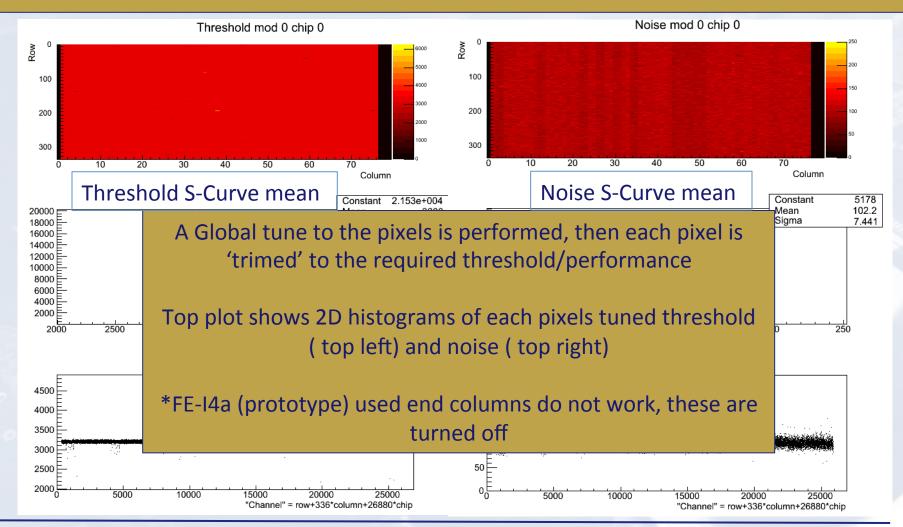




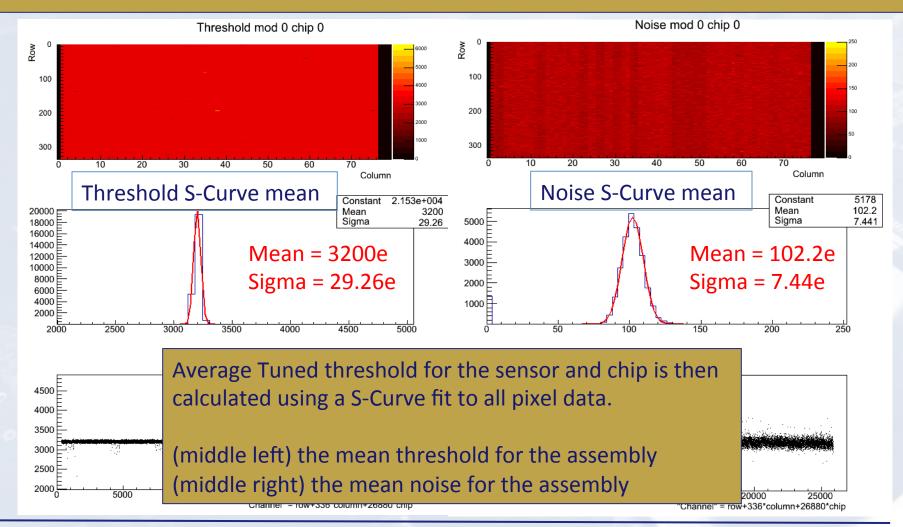



# **QUAD FE-I4 Sensors**

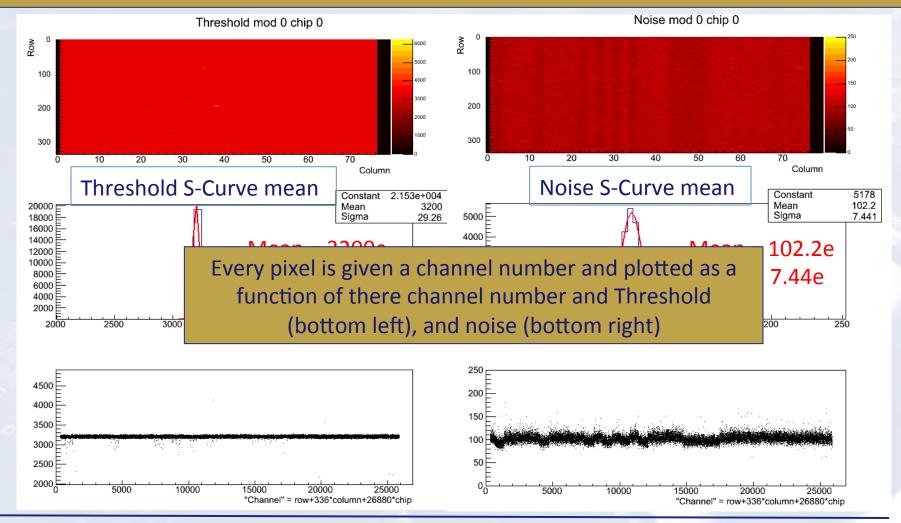
- Quads are roughly 4x4cm (singles 2x2cm)
- Only group to have a dedicated QUAD sensor design.
- UK have 4 fully bumped QUAD assemblies
- 2 have been irradiated to 5E15n<sub>eq</sub>/cm<sup>2</sup> in CERN's PS before shutdown, awaiting testing. Modifications to the Liverpool rigid test card needed
- 1 QUAD has been glued to a Bonn flex and mounted onto a rigid card for multiplexing testing.
- 1 QUAD mounted on a rigid test card similar to the SC rigid card IBL sensors used, Sensor can be unmounted without breaking wire bonds from ROC
- A Further 10 QUADs to be produced in 2013 for use in building a pixel disk segment





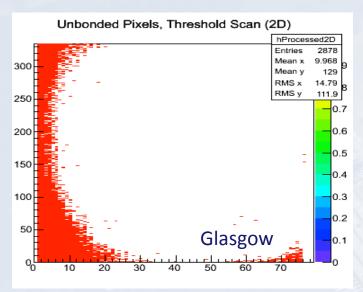













# **Disconnected pixels**

Pre bump bonding thinned ROC's show some disconnected pixels, due to roc bowing with temperature



Large areas of non-boned pixels at the corners & edges (only for very thin readout chips)

Disconnected pixels are rare for full thickness ROC's and for post bumped thinned ROC and sensors for single and quad sensors

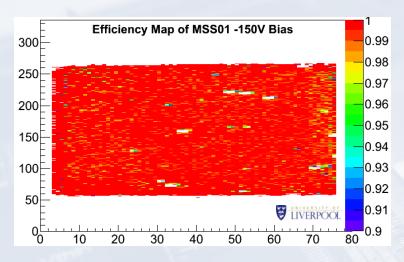
#### **Bump Process Flow**

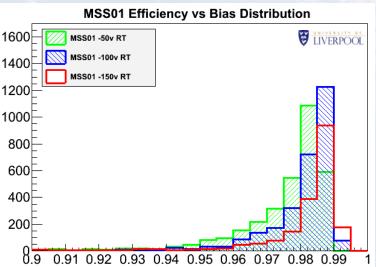
- Deposit UBM and bumps on ROIC
- 2. Thin ROIC to 200 μm / Diced
- 3. On vacuum jigs perform flip-chip for tack bond
- Re-flow in reducing atmosphere in oven (260C) unsupported assembly
   Self-align bumps
   Obtain good electrical properties

### **ROIC** bows due to non-symmetric layers

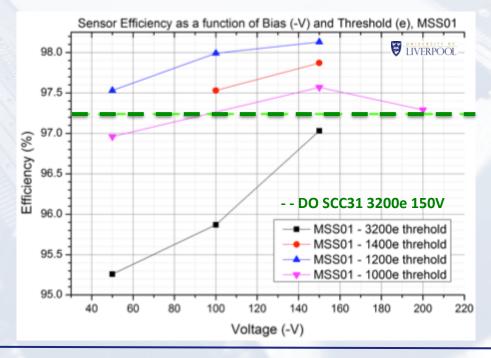
- Thick dielectric layers on top side
- Just silicon on back side

### **Solution under investigation**


- Support wafer technology
- Deposition of balancing dielectric on ROIC


Dean Forshaw HEPP IOP 2013 13




### First test beam results

#### DESY – 4GeV Positrons





- Devices are tested for high tracking efficiency vs
   Bias voltage and tuned Threshold
- high hit efficiency seen even for under depleted devices
- High hit efficiency important at low threshold operation to benefit from charge sharing after irradiation without losing hits that would normally be under threshold





# **Ongoing UK progress**

- Production of new Liverpool Cern Pixel 5 wafer, (square pixels, strixels, increased Rφ resolution sensors), Liverpool/Micron
- Irradiated Quad tests (2 irradiated quads at 5E15 1MeV n<sub>eg</sub>/cm<sup>2</sup>), Liverpool
- Testbeam data reconstruction/analysis, Liverpool
- Quad/Hex Module multiplexing, Manchester
- Thin ROC support wafer/ backside dielectric for production flip chipping, Glasgow
- FE-I4a/b wafer probing (FE-I4 ROC pass/fail), Glasgow/Edinburgh
- Pixel disk segment prototype mechanics/structure, Liverpool, Manchester, Glasgow
- Disk tapes, Edinburgh
- Wafer cleaning and passivation of FE-I4 wafers and material identification of pads, RAL
- Flip chipping, RAL
- Flex serial powering, RAL

Dean Forshaw HEPP IOP 2013



# Summary

Micron 6inch FE-I4 single and quad sensors available for production with high yield 300, 200, 150, 100μm thick, and n-in-n and n-in-p geometry types

#### Assemblies with flip-chip VTT

Excellent assembly IV characteristics

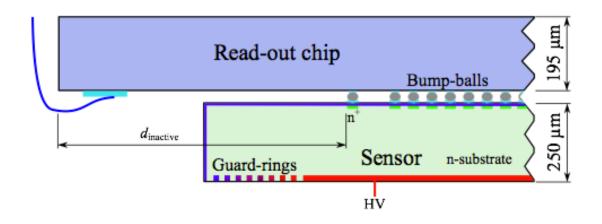
Problems at the edge due to bow with low bump yield

#### Quad module

Preliminary tests are very promising, first group to have a dedicated design

#### Testbeam analysis

Work under way into publishing test beam data for standard and non standard single and quad modules

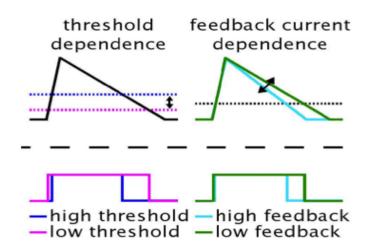

ATLAS PPS 2012 and 2013 results papers As well as general R&D papers for the quad and other designs



# **BACKUP**



# **Current ATLAS Pixel Detector**




#### Sensor design

- DOFZ Si n-substrate, 250μm thick
- Read-out chip planar n+-in-n pixels, 400x50µm2
- 16 guard rings on p side to shape HV step
- 1.1 mm inactive edge incl. safety margin

#### Read-out and interconnection

- FE-I3: 2880 channels
- DC coupled and bump bonding
- Shaper + Amplifier + Discriminator

