Muon antineutrinos in the T2K near detector IZK THE UNIVERSITY OF WARWICK

IoP HEPP & APP Group Meeting 2013

Callum Lister

Outline

In this talk:

- Brief overview of T2K and the near detector
- Outline selection of muon antineutrino events in T2K's primarily muon neutrino beam
- Work towards a muon antineutrino inclusive charged-current cross-section on carbon

T2K

Main Goals

- θ_{13} : $V_{\mu} \rightarrow V_{e}$ v_{e} appearance
- θ_{23} : $V_{\mu} \rightarrow V_{\mu}$ v_{μ} disappearance

Super-Kamiokande

ND280

- Determine beam composition prior to neutrino oscillation
 - Measure neutrino cross-sections

Detectors

P0D

(π⁰-

detector)

- π⁰ detector (P0D) optimised for NC and CC π⁰ detection
 - beam

 Fine-grained detectors as target mass

Downstream ECAL

Time projection chambers
 High resolution particle
 tracking for charge &
 momentum determination
 and particle identification

 Electromagnetic calorimeters provide EM energy measurement and additional particle identification

Cross-section Measurement

Antineutrino σ/E_{ν} measurements as of 2012

mean energy

- T2K beam contains approximately
 6% muon antineutrinos
- Muon antineutrino cross-section:
 - Reduce systematics in oscillation analysis
 - $\overline{v_{\mu}}$ background in disappearance measurement
 - Sparse world CC inclusive antineutrino data at energies
 - ~1 GeV
 - Benefit others in neutrino community

Cross-section Measurement

- Aim: Inclusive charged-current muon antineutrino cross-section on carbon (most upstream FGD)
- Final state includes positive muon, with no requirement on number of other particles

Selection

Selection requires vertex in FGD1 with TPC and ECal components

TPC Component

- Track curvature consistent with positive charge
- TPC provides pulls based on expected dE/dx
- Cut on muon and MIP distributions formed from pulls:

$$L_{i} \equiv \frac{\exp(-Pull_{i}^{2})}{\Sigma_{k} \exp(-Pull_{k}^{2})}, \quad L_{MIP} \equiv \frac{L_{\mu} + L_{\pi}}{1 - L_{p}}$$

*All plots are simulation using NEUT event generator

TPC MIP observable

Selection

ECal Component

- ECal provides log likelihood ratio variables
- Cut on:
 - log (Likelihood of being MIP-like / Likelihood of Showering Pion)
 - log (Likelihood of being MIP-like / Likelihood of EMShower)

Performance

Efficiency: 37.7±1.0%, Purity: 49.3±1.2%

—Systematic Error

 Initial systematic error studies, using a T2K software tool to reweight final distributions rather than generating new NEUT simulation

- Systematics separated into three categories:
 - Interaction modelling
 - Flux
 - Detector

 Will only outline modelling and flux systematics here as detector systematics are yet to be studied

—Systematic Error

Interaction modelling

- Reweighting approximates variation of nuclear modelling and interaction parameters by error associated to them
- Extract percentage change on inferred number of events

$$N^{inf.} = \frac{N(obs.) - N^{bg, MC sel}}{Efficiency}$$

Largest errors summed in quadrature for total error
 ~12%

Parameter	+1σ uncert. / %	-1σ uncert. / %
ν _μ background		
CCQE norm.	8.4	-8.4
CC1π norm.	7.4	-7.4
Spectral function	0.0	0.0
Fermi momentum	-0.3	0.7
MaCCQE	1.8	-1.8
MaRES	2.3	-2.2
Neutral current		
NC1π [±] norm.	1.8	-1.8
NC other	0.8	-1.4

Systematic Error

True neutrino energy / GeV

- 10000 fake data sets generated by reweighting simulation by flux uncertainty
- Gaussian fit to distribution of inferred number of events gives flux error ~20%

Summary

 T2K's ND280 can select muon antineutrinos in the muon neutrino beam using TPC and ECal particle identification

• Efficiency: 38%

• **Purity**: 49%

 Will put T2K in a strong position should the beam polarity be reversed for CP violation studies

- A muon antineutrino CC inclusive cross-section measurement on carbon is under-way, with selection nearing finalisation and systematic errors currently being studied
 - Should be a useful addition to sparse world antineutrino data at neutrino energies ~1 GeV

Muon antineutrinos in the T2K near detector IZK THE UNIVERSITY OF WARWICK

IoP HEPP & APP Group Meeting 2013

Callum Lister

Backup slides

MiniBooNE result

A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section", arXiv:1301.7067 [hep-ex]

Selection in depth

- Highest momentum track in event is selected as positive muon candidate
- Then must satisfy following requirements:

Cut no.	Cut
1&2	FGD1 fiducial volume & bunch cut
3	Number TPC Hits > 18
4	Matched FGD1-TPC2 track
5	ECal component
6	Positive track
7	Rec. momentum > 50 MeV
8	TPC1 veto
9	TPC PID: 0.1 < Mulik < 0.7 && Miplik < 0.9, if mom. >= 500MeV
10	ECal PID: mipEm < -10 && mipPion < -5

TPC PID variables

ECal PID variables

- Log likelihood ratio variables:
 - mipPion = log (Likelihood for being MIP-like / Likelihood of Showering Pion)
 - mipEm = log (Likelihood for being MIP-like / Likelihood of EMShower)
- Use the following variables as inputs:
 - Circularity: measure of cluster width in comparison to its length
 - QRMS: root mean square of the cluster's charge distribution
 - Transverse charge ratio: Create cylinder along shower direction. Then, Outer Hits Charge / Inner Hits Charge
 - Truncated max. ratio: remove highest/lowest 20% hit charges. Then, Max(Qlayer)/Min(Qlayer)
 - FrontBackRatio: Ratio of charge at the end of track to the start

ECal PID variables

Selection

Muon neutrino flux

