Working Towards a Boosted \(Z \rightarrow bb\) Measurement with ATLAS

IoP 2013, Liverpool

Luke Lambourne
Boosted Z\rightarrowbb: Motivation

- For searches in hadronic decay channels it is often advantageous to look for the decay of objects with a high p_T, so-called ‘boosted objects’
 - Observing boosted Z\rightarrowbb would be an important stepping stone in the development of boosted hadronic analyses at the LHC
- The Z\rightarrowbb peak could be used:
 - To help assess systematics for analyses involving b-jets, e.g. H\rightarrowbb
 - As a test bed for techniques to improve the bb mass resolution, e.g. substructure
- Everything shown is work in progress
An event display showing the $Z\rightarrow bb$ signal topology:
3 high p_T jets: 1 that balances the Z and two nearby
b-jets from the Z decay

Basic Event Selection

- Two anti-k_t $R = 0.4$ jets, both jets with $p_T > 30$ GeV
- Two of these jets with a vector added $p_T > 200$ GeV
- Both of these jets b-tagged
- $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ between the two jets < 1.2
Key challenges facing analysis:

Bad MC description of background (Pythia 6 and Herwig+Jimmy)

Low S/B

- After the initial selection the S/B is ~1% over the whole mass range
- The signal/background, in the mass window [80,110] GeV, predicted by simulation is 3.3% with ~950 recorded events for 2011 data
 - Need to increase this to stand a chance of observing $Z \rightarrow bb$
- So search for variables that discriminate QCD from $Z \rightarrow bb$
Properties of Balancing jet in Event

Here we define the balancing jet in the event as the one that best balances the bb dijet, in the transverse plane, when added vectorially.

\[\alpha_T = \frac{p_T \text{ of balancing jet}}{\text{mass of dijet-balancing jet system}} \]

All MC in these plots is Pythia 6
Plot on the left shows the number of jets in the event.

Plot on the right shows the scalar sum of the E_T of jets in the event. This excludes the two b-tagged Z candidate jets and the balancing jet.
Here, we look at the scalar sum of track p_T in the event. We exclude tracks associated to the two Z candidate b-tagged jets and the balancing jet in the event. The tracks pass a series of quality cuts.

This is split into two areas:

(1) A cone of $R=1.5$ around the bb dijet axis

(2) The rest of the event
Also use the b-tagging weights of the two b-tagged jets together with the other variables. Combine them into an MVA to take account of the correlations to get maximum discrimination of signal from background.
A neural network was found to give the best separation between signal and background.

A cut at 70% signal efficiency improves the s/d by a factor of ~2 and doesn’t have much of an impact on the data mass distribution.

<table>
<thead>
<tr>
<th>In Mass Window [80,110] GeV:</th>
<th>S/B</th>
<th>S/√B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before NN cut</td>
<td>3.1%</td>
<td>4.7</td>
</tr>
<tr>
<td>After cut on NN</td>
<td>6.4%</td>
<td>5.9</td>
</tr>
</tbody>
</table>

ATLAS Work in Progress

\(\sqrt{s} = 7 \text{ TeV} \int L \, dt = 4.7 \text{ fb}^{-1} \)
The trigger we use for 2011 data consisted of a high-p_T cut on a single jet as well as a cut on the overall energy in the event
- Signal efficiency of $\sim 45\%$

The idea for the 2012 trigger is to look for events with at least 3 high-p_T jets, with at least 2 of those jets b-tagged, to keep the trigger rate low

Trigger ran in 2012 menu and combining with a few others we get $\sim 90\%$ overall signal efficiency
• The boosted $Z \rightarrow bb$ analysis effort is ongoing
• Pythia and Herwig do a bad job of modeling QCD high p_T bb events
• Using an MVA of event topology variables, we can increase the, initially low, signal to background ratio by a factor of ~ 2
• There was a more efficient trigger running unprescaled for the 2012 data-taking period. This gives us access to a significantly larger sample of $Z \rightarrow bb$ events in data than in 2011
Backup Slides

Luke Lambourne
Cut efficiencies and optimal cut value

- **Signal efficiency**: Blue line
- **Background efficiency**: Red line
- **Signal purity**: Dotted blue line
- **Signal efficiency * purity**: Green line
- **S / √S+B**: Black line

For 1070 signal and 33710 background events, the maximum S / √S+B is 6.1587 when cutting at 0.2177.

Kolmogorov-Smirnov test: signal (background) probability = 0.759 (0.984)

TMVA overtraining check for classifier: MLP_ANN_RoughOptimised