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Outline

Various aspects of transplanckian scattering and some approaches to
study this and related problems of QG

I Motivation and what problems we want to solve

I Eikonal approximation and beyond

I Scattering phases and QM of black holes

I New formulation of old problems



Introduction

I EM, Strong, Weak interactions of nature are incorporated within
the framework of the Standard Model

I SM is a fundamental and consistent QFT describing nature with
high accuracy

I However, with all the successes of the SM, we still don’t know
how to unite GR with QM.

I Moreover, the problem is not just UV but also IR!



Introduction

In an attempt to reconcile GR with QM one faces multiple difficulties.
Three of these problems are:

I P1. GR is not renormalizable

I P2. Unitarity violation (information paradox) or the classical
objects of GR, BH do not allow synthesis with QM

I P3. problem in defining gauge invariant observables in GR

P2 and P3 suggest that we might want to abandon the notion of
locality in order to find consistent theory of QG

I want to understand the problem of unitarity throught the study of
transplanckian collisions which produce BH states



Introduction

Taking into account the problems with locality and renormalizability,
along with the lack of knowledge of exact QG, we will attempt to
understand this problem by employing S-matrix description of gravity

If |α〉in and |β〉out are asymptotic states in Minkowski space-time,
then the scattering matrix is:

Sαβ = 〈β|α〉
S = 1 + iT

Main properties of the S-matrix:

I Unitarity S S† = 1
I Analyticity
I Crossing T (s∗, t∗) = T ∗(s, t) (hermitean analyticity)



Introduction

I We apply S-matrix approach to study 2→ 2 scattering of
particles with the c.o.m. energy

√
s� MPl and will vary

momentum transfer
√
−t or angle θ

I In general (p1, p2)→ (p3, p4) scattering can be described by
analytic function in (s, t), where s = (p1 + p2)2, t = (p2 − p3)2

I For example, at tree-level: e+e− → e+e− and π+π− → π+π−

EM scattering (in case s� m2
i and −t/s� 1) gives:

T ∼ −α s
t
≈ α

sin2 (θ/2)

I However, φφ→ φφ gravitational scattering gives:

T ∼ −GN
s2

t
≈ GNs

sin2 (θ/2)

for fixed θ we have |T |2 →∞, therefore, problems with unitarity



Introduction

I In gravity unitarity problem is different from one in Fermi theory
and WLWL → WLWL scattering that lead to the theoretical
discovery of Higgs

I For gravity, unitarity violations occur not only for short scales
but also at long distances, not linked to UV-behavior of gravity

I Another difference of GR from the rest of the SM interactions is
that GR generates an s-dependent scale - Schwarzschild radius



Parameters of Transplanckian Scattering

The relevant length scales involved in two particle scattering with
c.o.m. energy

√
s are:

I i) `P ≡
√
~GN , quantum Planck’s length scale

I ii) R = 2GN
√

s, classical characteristic Schwarzschild radius

fD(r) = 1− κDM
MD−2

D rD−3

I iii) b - impact parameter of scattering (used often instead of t)

I iv) `s =
√
~α′, string length scale

We are interested in the regime: `s � min{`p,R, b}.



Parameters of Transplanckian Scattering

To establish a perturbative expansion, it is convenient to work with:

I a.
(
`P
b

)2
= ~GN

b2 ≡ α(b)

I b.
(

R
`P

)2
= 4GNs

~ ≡ N(s)

I c.
(R

b

)2
= ~GN

b2 · 4GNs
~ = αN

While α and N are quantum, αN is a classical parameter

Cases:

I For b� R or αN � 1, we have a small angle scattering
I For b ∼ R or α ∼ 1/N, we have a large angle scattering
I For b ≤ R or αN ≥ 1, collision produces a trapped surface,

therefore a black hole (Eardley, Giddings ’02)



Eikonal Regime

For b� R, `P - single graviton exchange dominates the scattering amplitude

I A0(s, t) ≈ −8πGNs2/t (the leading Born amplitude)

When b becomes smaller, but still much larger than R, the scattering enters
the eikonal regime, in which case (Amati et al. ’90)

iAeik(s, t) = 2s
∫

d2x⊥ e−iq⊥x⊥
(

eiχ(x⊥,s) − 1
)
,

χ(x⊥, s) =
1
2s

∫
d2k⊥
(2π)2 eik⊥x⊥ A0(s,−k2

⊥) ,

where |x⊥| = b, and χ ∼ N(s) ln(bλIR) is an eikonal phase with λIR being
an IR cutoff

Soft graviton divergences can be eliminated in case D ≥ 5 for which
χ ∼ GDs/bD−4, see, e.g. (Giddings ’07).



Eikonal Amplitude

I Eikonal amplitude starts to dominate the Born amplitude, when χ ≥ 1

I Elastic amplitude A0 grows too fast with energy→ breaks unitarity

I To maintain unitarity the full sum over ladder and cross-ladder
diagrams is required

I The crossover between Born and eikonal approximatinos occur when
b ∼ (GDs)1/(D−4) for D > 4



Eikonal Amplitude

I Decreasing b, so that b > R, we will enter a regime, where
intermediate graviton exchange diagrams among different legs of the
ladder will start to contribute

I Simplest H-diagram ∼ G3
Ns2 ∼ GNs(R/b)2 ∼ αN2

I These H-diagrams will be described by (R/b)2 = αN classical
expansion (Amati et al ’90). In this case, the S matrix can be written as:

ln S(α,N) = iNF(αN, ln N, lnα) [1 +O(~)] ,

where F is some function of R/b, ln s and ln b respectively

I Entering the region where αN ∼ 1, we have to add all H-type of
diagrams, which in certain respect is a classical problem



What is the Meaning of Imaginary N?

I The scattering amplitude of one particle, seen as a test body, in the
background metric of the other particle, an Aichelburg-Sexl metric was
computed by ’t Hooft (same can be obtained by eikonal approximation)

I When θ2 ∼ −t/s� 1, the important contribution comes from
b ≈ R/θ � R. In this case, the small-angle amplitude can be computed
by just extending the previous result up to b = 0. As a result:

iAeik(s, t) =
2iπsN
−t

Γ(1− iN/4)

Γ(1 + iN/4)

(
4λ2

IR

−t

)−iN/4

,

where the first fraction is just the Born amplitude. (We also assumed
m�

√
s, where m is the mass of the scatteried particle.)

I The complex N-poles of this amplitude are analogous to those in the
Coulomb scattering, due to the 1/r potential.

I Therefore, ’t Hooft poles originate from the singularity at b = 0, that
we attempted to ignore, without consistently treating the b < R region



The Black Hole Ansatz in the Large N limit

I The partial-wave expansion of the scattering amplitude (in D
dimensions) can be written as ;

A(s, t) = ψhs2−D/2
∞∑
`=0

(`+ h)Ch
`(1 + 2t/s)f`(s) ,

f`(s) =
1
2i

(
e2iδ`(s)−2β`(s) − 1

)
,

where h = (D− 3)/2, ψh ≡ 24h+3πhΓ(h)

I δ` is the phase shift, and β` is an absorption parameter.
I ` = Eb/2 and L ≡ ERS/2 = (GDED−2)1/(D−3) also ` ≤ L when

BH is expected to be formed



The Black Hole Ansatz in the Large N limit

I As one can check, partial-wave amplitudes satisfy unitarity
condition: Im f` ≥ |f`|2 for each `.

I In theory with mass gap the expansion converges in a certain
region (Lehman-ellipse) and one can derive Froissart-Martin
bound σtot < c(ln s)D−2 (if there is a mass gap)

I Since gravity is massless, we have problems!
I For long distances (large b) or Born approximation A ∼ 1/θ2,

therefore, integral in

f`(s) = sD/2−2
∫ π

0
dθ sinD−3 θ Ch

`(cos θ)A(s, t)

converges only when D > 4



The Black Hole Ansatz in the Large N limit

I In the eikonal regime, and when D = 4, one has:
δeik
` (s) ∼ 4GN s

~ ∼ N(s) and βeik
` (s) = 0

I The contribution from the graviton bremsstrahlung of soft gravitons
can be estimated to give the following correction to the absorptive part:
βsoft
` ∼ αN2(s) (same order as H-diagram)

I According to Giddings and Srednicki, if SBH(s, b) ∼ N(s) is the black
hole entropy, and R ≤ b or ` ≤ N, then

δGS
` (s) ∼ πeSBH , βGS

` ∼ SBH

I As a result, the elastic and absorptive cross sections can be shown to be
approximately equal, and:

σel ≈ σabs ∼
N∑
`=0

(`+ h) ∼ N2



Number of BH Microstates
Is the number of BH state resonances really ∼ eSBH ?

I Consider multiparticle collision with the c.o.m. energy E that
results to the production of black hole (BH) states

I Assume that the initial state is |E, a〉in, where a run through the
number of states that can be produced from the collapse of
matter of energy E

→ a takes exp{E
(D−2)(D−1)

D(D−3) } integer values

I Since not all of the energy goes into the production of BH, the
produced state will be a mixture of BH state and radiation:

|E, a〉in =
∑
M,I,i

A(E,M)aIi|M, I〉|E −M, i〉rad ,

where |M, I〉 and |E −M, i〉rad are orthonormal states in the
Hilbert spaces of BH,HBH , and radiation,HR, correspondingly.



Number of BH Microstates

The dimensions ofHBH andHR are:

dimHBH = exp{M
D−2
D−3 } , dimHR = exp{E

D−2
D−3 } .

Moreover, as mentioned above,

dim{|M〉ai} = exp{E
(D−2)(D−1)

D(D−3) } � dimHBH ,

therefore, not all BH states can be accessed by the collision, since
E/2 < M < E

This suggests that the correct phase shift should be different and
depend not on SBH but on Sbh



Summary

Different Regimes of Scattering when b� `s

I Coulomb (or Born) regime: b ≥ (GDs)1/(D−4)

I Eikonal regime: (GDs)1/(D−4) ≥ b ≥ RS ∼ (GD
√

s)1/(D−3)

I Strong dynamics: b ≤ RS

Questions:
I What is the number of BH states accessed by the collision?
I Can this knowledge help us to resolve the Information Paradox?


