Nuclear Constraints on EoS and Supramassive Neutron Stars?

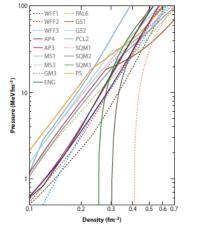
Lex Dieperink¹

¹Kernfysisch Versneller Instituut University of Groningen

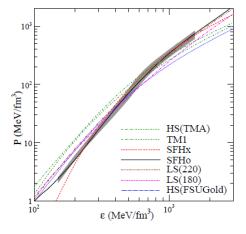
Collaborators: Csaba Korpa, Pecs Piet van Isacker, GANIL

Yerevan, Sep 2013

- Improve Nuclear Constraints on EoS
- Supramassive Neutron Stars?


.⊒ . ►

Nuclear Constraints on EoS using Charge Radii



-∢ ∃ ▶

EoS last decade

from Lattimer 2000...2012 various models for EoS spread in $P(\rho = \rho_s)$ is factor 6

from Steiner et al., astro-ph/1207.2184 various Relativ. Mean Field L varies between 23 and 111 MeV Pressure in terms of energy density $P(\rho) = \rho \frac{d\epsilon}{d\rho} - \epsilon$

In neighborhood of saturation density ρ_s , $u = \rho/\rho_s$ $\epsilon(u, x) = B + K/18(u-1)^2 + S_A(u)(1-2x)^2 + ...$

K : compressibility, S_A : symmetry energy, x: proton fraction

EoS

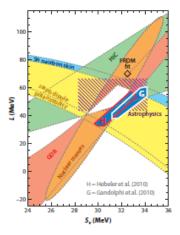
$$P \sim u^2 \rho_s [K/9(u-1) + \frac{dS_A}{du}(1-2x)^2 + ..]$$

In practice $P(\rho \sim \rho_s)$ dominated by 2nd term, $L \equiv \frac{dS}{d\mu}$, will be subject on next slides

EoS

Nuclear constraints: Symmetry energy and neutron skin

The symmetry energy in LDM has 2 par's S_s (surface) and S_v (volume) SE


$$S_A = \frac{(N-Z)^2}{A} \frac{S_v}{1+yA^{-1/3}}$$
 $y = S_s/S_v$

Wanted: $L = dS/d\rho$, (Lattimer) $y \sim 0.65 + \frac{S_v}{98}$ MeV $+ 0.44 \frac{L}{S_v} + ...$

 S_{ν} , y from fit to masses strongly correlated same for L, S_{ν} (orange 1- σ confid. ellips)

similar correlation in microscopic (MF) models

info from radii is orthogonal to masses but blue band ("skins of Sn") model dependent (e.g. anti-p atoms)

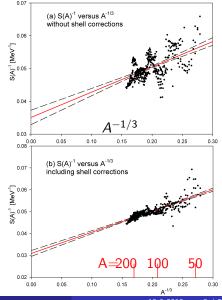
L vs S_v Lattimer,Ann.Rev.NP.Sci62(2012) Liquid Drop Model: (Equivalent to Energy Density Functional (EDF) for $A \rightarrow \infty$ after averaging over shell effects)

EoS

$$B(N, Z) = a_{v}A + a_{a}A^{2/3} + a_{sym}\frac{(N-Z)^{2}}{A} + Coulomb + pairing + \dots$$
$$S_{A} = \frac{(N-Z)^{2}}{A} \frac{S_{v}}{1+yA^{-1/3}} \quad y = S_{s}/S_{v}$$

variation of $A^{1/3}$ between A=27 and A=216 is only factor 2 hence global fit leads to strong correlation between S_s and S_v

But there are remedies...


Idea: By taking differentials, eg E(N + i, Z - i) - E(N, Z)one can isolate Symmetry energy from A- dependent terms

Improved fit, remove shell effects

step (1) isolate symmetry energy by taking differences with same A fit par's in $S = \frac{S_v}{1+yA^{1/3}}$ to masses by plotting 1/S vs $A^{-1/3}$ crossing of line with y-axis ($A = \infty$) gives $1/S_v$, slope $y = 2.6 \pm 0.8$

step (2) remove shell effects (see Duflo-Zucker) improves fit $S_v = 31 \pm 0.6$ MeV $y = 2.5 \pm 0.40$ correlated

L.D and P. van Isacker, Eur.J.Phys. A32 11

EoS

Alternative: Double Differences

use Double Differences e.g.

 $\Delta_{ij} = E(Z, N) + E(Z - i, N - j) - E(Z, N - j) - E(Z - i, N) \text{ (i,j=1,2,..)}$ Jiang, Arima et al. PRC85 024301(2012)

Result $S_v = 32.1 \pm 0.3$ MeV and $S_s = 58.9 \pm 1.1$ MeV $y = 1.9 \pm ..?$

errors smaller than in literature, no correlation given however dependence on form Wigner energy (=binding correction for N = Z)

Some recent results

S_v	S_s/S_v	L(MeV)	ref	model
		masses		
32.5	1.98	70 ± 15	Möller etal PRL108 052501	FRLDM
32.1	1.9		Jiang et al PRC85 024301	double diff
31.1	2.31	66 ± 13	Liu et al PRC82 064306	LDM
32	3.0	113	Danielewicz IntJMP 18 892	analysis IAS
31	$2.5\pm.4$	80 ± 15	L.D. etal EurJPhysA32 11	LDM+shell co

EoS

Microsc

30		58 ± 18	L-W. Chen, PRC82 024321	Skyrme+skin
31 ± 1		31 - 60	Gandolfi etal,PRC85 032801	QMC
31 ± 1	$1.85\pm.25$	46 ± 10	Hebeler,PRL105 161102	EFT
31 ± 1		59 ± 13	Agrawal, NT $/1305.5336$	EDF

・ロト ・ 日 ト ・ 日 ト ・

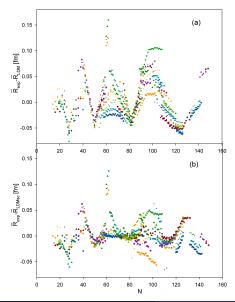
Step(3): Information from Radii is Complementary

EoS

In LDM one distinguishes proton and neutron radii

$$R_i(N,Z) = R_0(N,Z) \pm \frac{N-Z}{2A}R_1(N,Z) \pm \frac{1}{2}\delta R_C(N,Z) \quad i=p,n$$

isoscalar term $R_0 = (NR_n + ZR_p)/A \sim r_0 A^{1/3}$ isovector term (neutron skin) $R_n - R_p = \frac{2r_0}{3} \frac{N-Z}{A} (\frac{1}{1+A^{1/3}/y}) + \delta R_C$ depends only on $y = S_s/S_v$ (apart from Coulomb)


scenarios:

(i) measure neutron skin in pv electron scatt.[PREX: Pb Radius Exp] PRL 108 112502 (2012): $R_{np} \sim 0.33 \pm 0.17$ fm, improved at PREX-II? more promising:Atomic parity violation, in progress, aim $R_{np} = .. \pm 0.04$ (ii) fit to observed charge charge radii

can be improved by considering isobar shifts (same A) $R_p(N, Z) - R_p(N - i, Z + i)$, independent of R_0 best strategy: combined fit to radii and masses

Charge Radii in LDM, shell corrected

EoS

fit "database" of 700 radii

Residuals $R_{exp} - R_{LDM}^{fit}$ vs N (same color for isotopic chain) note shell effects at N=50,82,126

rms dev = 0.036 fm $y = 2.6 \pm 0.3$

Remove shell effects (method: Duflo-Zucker, mod:LD) rms dev= 0.019 fm $y = 2.25 \pm 0.13$

long chains of accurate isotope shifts, except overall normalization

remaining variations due to effects of deformation etc

Dieperink (KVI)

- pv electron scatt. [PREX: Pb Radius Exp] PRL 108 112502 (2012): $R_{np} \sim 0.33 \pm 0.17$ fm, will be improved at PREX-II
- atomic parity violation, primary aim: to determine Weinberg angle

 $\langle H \rangle = \frac{G}{2\sqrt{2}} \int d^3 r [-N\rho_n(r) + Z(1 - 4\sin^2\theta_W)\rho_p(r)] \psi^{\dagger}\gamma_5 \psi$

EoS

can be turned around, assume weak force OK determine R_{np} and slope within 1% available for Cs (Wieman, 1990) not accurate enough in progress on Ra isotopes, expected accuracy 1%

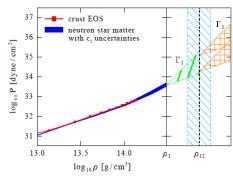
• anti-protonic atoms; analysis model dependent

Combined fit to masses and radii

model	у	L(MeV)	<i>R_{np}</i> (²⁰⁸ Pb) (fm)
present	2.25 ± 0.20	65 < <i>L</i> < 90	0.185 ± 0.015
$\chi {\sf EFT}$	1.85 ± 0.25	36 < <i>L</i> < 56	0.17 ± 0.03
QMC		41 < <i>L</i> < 64	
EDF		46 < <i>L</i> < 72	0.195 ± 0.02

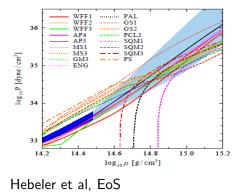
Phenomenology favours larger L values than most microscopic models

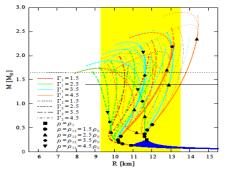
Need to understand that


Microscopic developments: use χEFT

For long time microscopic calculations of group of Pandharipande was considered most realistic, based upon realistic NN force plus phenomenological 3-body force using var. approach and correlated basis functions

Later: SCGF, RMF, Bruckner+3BF...)


Recent development: use of chiral effective field theory for low density neutron matter, with extrapolation to beta equilibrium Claim: uncertainty in $P(\rho_s)$ reduced from factor 6 to 1.5


all many-body effects included? saturation density predicted correctly?

EoS; polytropes added for $\rho > \rho_s$ Hebeler, PRL 105 161102 (2010)

Results

MvsR for various polytropes $\rho > \rho_s$ $P = K \rho^{\Gamma}$

< ロ > < 同 > < 三 > < 三

EoS

Part II: Rotating Neutron Star

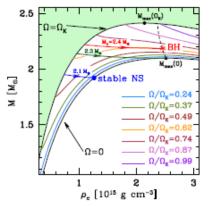
- Several energetic observations can be associated with formation of NS's or BH's: Supernovae, Gamma Ray Bursts.... Some short GRB (~1s) have been attributed to NS mergers
- New: observed short (ms) radio bursts Suggestion: collapse of supramassive rotating NS

"supramassive": M_{rot} larger than $M_{max}(0)$ of non-rotating NS

A population of fast radio bursts at cosmological distances D. Thornton *et al.*, Science 341 53 (2013)

"... Host galaxy and intergalactic medium models suggest that they have redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts"

Fast Radio Bursts: last sign of Supramassive Rotating Neutron Stars (Blitzars) Heino Falcke and Luciano Rezzolla, arXiv:astro-ph/1307.1409


Millisecond extragalactic radio bursts as magnetar flares S.B. Popov , K.A. Postnov astro-ph/1307.4924

Fast Radio Burst explained by F-R

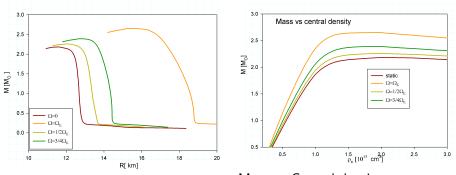
- Observation: bright radio pulse ΔT ≤ 1ms does not repeat, no γ− or x-ray seen radio flux ~ Jy at GHz freq.; dispersive several ones have been observed since 2007
- Interpretation by F-R: final farewell greetings of supramassive rotating NS, e.g. created by accretion in binary system at critical point: collapsing into Kerr BH after slowing down due to magnetic braking
 - Event horizon will hide stars surface, only emission from detached magnetosphere is seen
 - Timescale for collapse: (freefall) $\tau \sim 0.04 R_{10}^{3/2} M_2^{-1/2}$ ms

Radio bursts

Scenario of Falcke-R

grav. mass vs central density for various ratios $f = \Omega/\Omega_K$

- EoS: polytrope $P = K \rho^{\gamma}$ $\gamma = 2$, K adjusted such that $M(0)_{max} = 2.1 M_{\odot}$
- computed critical spin (Keppler or mass shedding limit) $\Omega_{K} = 2\pi/\tau \ (\sim 1 \text{ms}^{-1})$
- arrows: tracks of NSs slowing down due to magnetic braking (depends on f, $B \sim 10^{12}$ G ?) green: 10^{6} y, red: 3000y
- dashed line: stability line (collapse to Kerr BH)


Event horizon hides stars surface, only emission from detached magnetosphere is seen; timescale: (freefall) $\tau \sim 0.04 R_{10}^{3/2} M_2^{-1/2}$ ms

Questions

- Rates: F-R claim: only few % of NS's need to be supramassive to explain observations finding a NS with τ ~ 1ms, M > M_{max}(0) and B ~ 10¹²G seems extremely rare (using info pulsars) e.g. τ_K ~1ms; observed < 1%
- Magnetic field: plays role in "braking" as well in "bursts" is a "unknown parameter" if spin-up comes from companion will it suppress magnetic field? Isotropic or directional emission?
- EoS: F-R use single polytrope $P = K\rho^{\gamma}$ $\gamma = 2$, K adjusted to $M_{max} = 2.1 M_{\odot}$ Note: is simplistic, plenty of realistic EoS exist is there a sensitivity to EoS ?

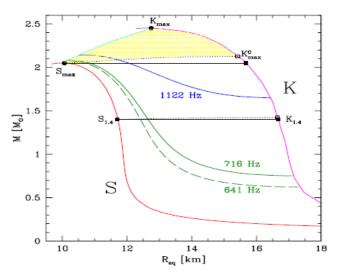
Radio bursts

M vs R for realistic EoS

Mass vs Radius

Mass vs Central density

A D > A A P >

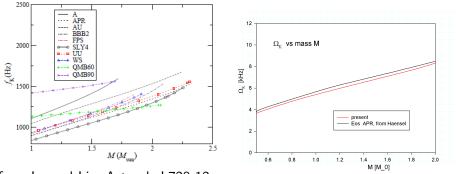

→ ∃ >

Qualitatively we confirm plot of Falcke-Rezzolla, i.e. $M(\Omega_K)$ increases by 20% $R(\Omega_K)$ increases by 50%

EoS based on 3-polytrope fit to Steiner et al $(M(0)_{max} = 2.2M_{\odot})$

Radio bursts

Other results for M vs R



from Haensel et al., astro-ph/0901.1268

based on EoS of Douchy-Haensel, $M_{max} = 2.05 M_{\odot}$

Dependence ν_{K} on EoS (2)

Critical frequency is sensitive to EoS

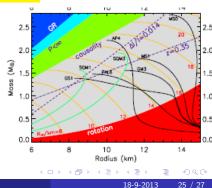
from Lo and Lin, Astroph.J.728 12 (2011)

comparison of present EoS and APR

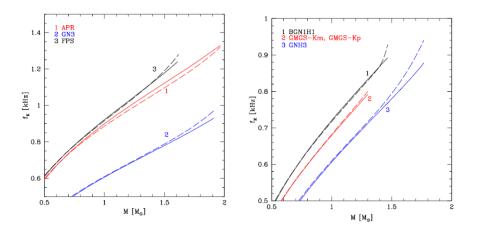
Radio bursts

Approximation for mass shedding (Kepler) frequency

Newtonian uniformly rotating rigid star with M, R (mass shedding limit) $\tau_{min} = 2\pi \sqrt{\frac{R^3}{GM}} = 0.545 (M_{\odot}/M)^{1/2} (R/10 \text{km})^{3/2} \text{ ms}$


General relativity Lattimer, Haensel derived empirical relation (valid for $M < 0.9M_{max}(0)$; M, R of static star, depending on EoS) $\tau_{min} = 0.92 \pm 0.04 (M_{\odot}/M)^{1/2} (R/10 {\rm km})^{3/2} {\rm ms}$

Relevance


observed max spin $\nu_{obs}=1/\tau_{obs}$ (using $\nu_{K}\geq\nu_{obs})$ puts bound on M vs R

Observed 716 Hz pulsar

 $R < 10.4(1000 {\rm Hz}/\nu_{obs})^{2/3} (M/M_{\odot})^{1/3}$ km excludes red area in figure fairly insensitive to EoS

Dependence ν_K on EoS

 $u_{K}=\Omega_{K}/(2\pi)$ vs M

from Haensel et al.

neutron skin in LDM

options:

- from isovector term in R: $\frac{R_{np}}{R} = \frac{N-Z}{A} \left(\frac{1}{1+A^{1/3}/y}\right) b + \delta R_C$ fit to charge radii, $y = S_v/S_s$ e.g. ²⁰⁸Pb: (no shell corr!) $R_{np} = 0.18 \pm 0.03$ fm y = ...
- **2** from relation between R_{np} and μ_a (=isovector chem pot)

$$\mu_{a} = S_{n} - S_{p} = B(N - 1, Z) - B(N, Z - 1) = \frac{dE}{dN} - \frac{dE}{dZ} \sim \frac{N - Z}{A} S_{A} + \dots$$
$$= \frac{4(N - Z)}{A} \frac{S_{v}}{1 + yA^{-1/3}} - \frac{5a_{c}}{6} \frac{Z}{A^{1/3}}$$

combining (i)+(ii)
$$\frac{R_{np}}{R_0} = \frac{\mu_a}{24S_s} \frac{A^{5/3}}{NZ} + \frac{5a_c}{72S_s} \frac{A^{4/3}}{N}$$

take $\mu_a(N, Z)$ from exp (hence shell effects implicitly included) overall uncertainty in R_{np} from error in S_s (15%) One accurate measurement (PREX) on ²⁰⁸Pb will fix that Note: scaling in (1) but not in (2)

18-9-2013

27 / 27