

Networking and Workload Management

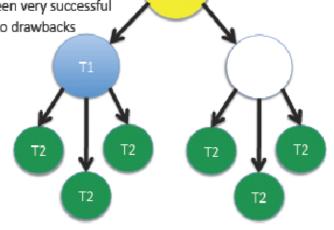
Kaushik De Univ. of Texas at Arlington

LHCONE P2P Workshop, CERN December 13, 2012

Introduction

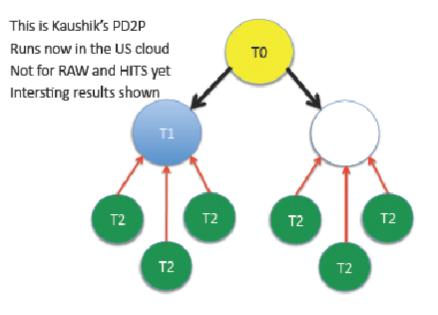
- Workload Management Systems (WMS) are crucial to the success of the LHC, and other high data volume sciences
- Distributed computing infrastructure, like the WLCG, especially require sophisticated WMS
- These WMS implicitly and explicitly depend on networking
 - Need agile WMS design to work with evolving network capabilities
 - But networking is used as a black box not as a managed resource
 - Is this inevitable or can we evolve to a better model?
- In this talk:
 - Show some recent WMS changes motivated by networking
 - I will describe how networking is used in a WMS
 - But focus on the potential for future improvements
- I will use PanDA WMS as example since I know it best
 - I hope to provoke discussion and exchange of ideas

ATLAS Computing Model – Ancient History


Data placement model The"Monarch Model"

TO

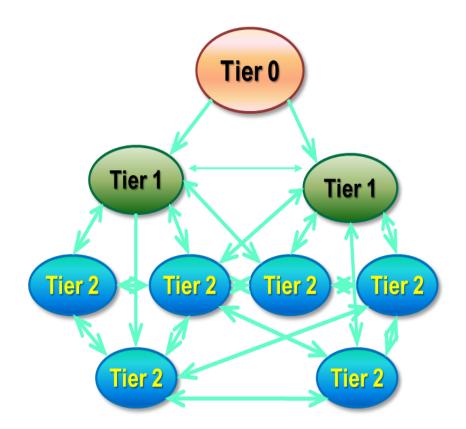
- It is a push model .
- And has been very successful


- The original computing model for ATLAS was a push model, based on network capabilities 10 years ago
- PanDA WMS was designed to work with this rigid data placement model
- Within few months of LHC startup, we realized it was necessary to change
- PanDA quickly evolved, thanks to flexible design

ATLAS Pulled by Networking

.

- By middle of 2011, Kors showed the changed computing model implemented in PanDA
- We quickly went from push model to pull model
- But some pushing came back in 2012 by physics analysis groups
- Now we have push-pull model for user analysis
- Flexibility wins again

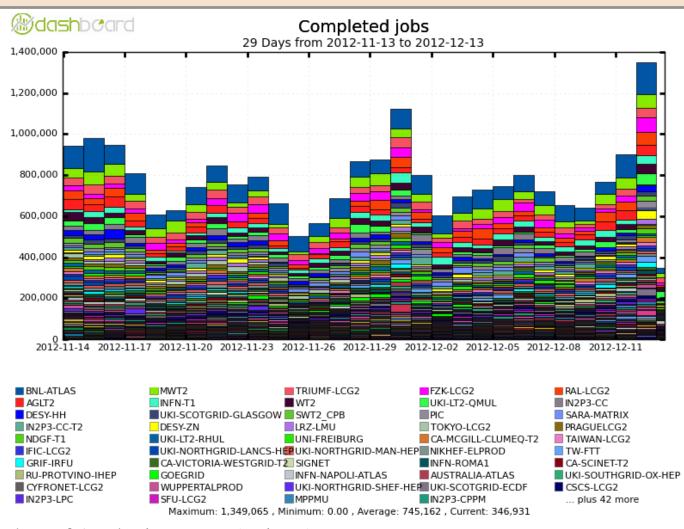


Computing Cloud Boundaries

- PanDA continued to evolve as networking transcended national boundaries
- Michael showed this picture on Monday
- Many Tier 2's participate in multi-cloud production
- No longer forced into geographical isolation
- ATLAS benefits from faster data processing

PanDA Introduction

What is PanDA:


- An automated, flexible workload management system which can optimally make distributed resources accessible to all users
- Designed for the ATLAS experiment at the LHC
 - Hundreds of petabytes of data are distributed world-wide to over one hundred WLCG computing centers
 - Hundred thousand production jobs run continuously on these resources
 - Thousands of physicists analyze the globally distributed data
 - PanDA is now being tested by AMS and CMS experiments

References

- https://twiki.cern.ch/twiki/bin/viewauth/Atlas/PanDA
- http://www.usatlas.bnl.gov/twiki/bin/view/PanDA/WebHome
- http://panda.cern.ch:25880/server/pandamon/query
- Recent Improvements in the ATLAS PanDA Pilot, P.
 Nilsson, CHEP 2012, United States, May 2012
- PD2P : PanDA Dynamic Data Placement for ATLAS, T.
 Maeno, CHEP 2012, United States, May 2012
- Evolution of the ATLAS PanDA Production and Distributed Analysis System, T. Maeno, CHEP 2012, United States, May 2012

Number of Analysis Users: (unique) Users in the last 3 days : **458**; 7: **623**; 30: **941**; 90: **1240**; 180: **1547**;

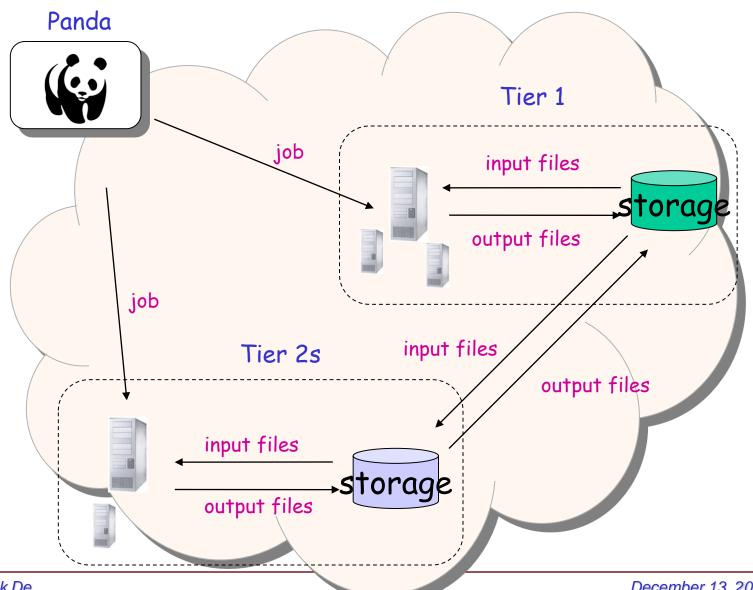
Kaushik De

December 13, 2012

PanDA Philosophy

- PanDA WMS design goals:
 - Achieve high level of automation to reduce operational effort
 - Flexibility in adapting to evolving hardware and network capabilities
 - Support diverse and changing middleware
 - Insulate user from hardware, network, middleware, and all other complexities of the underlying system
 - Unified system for organized production and user analysis
 - Incremental and adaptive software development

PanDA and DDM


- PanDA uses a independent and asynchronous Distributed Data Management system (DDM) called DQ2 in ATLAS
- DDM is tightly coupled to networking will not address here

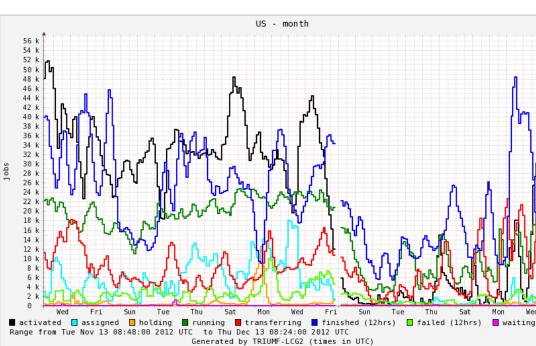
PanDA Basics

- Key features of PanDA
 - Pilot based job execution system
 - ATLAS work is sent only after pilot execution begins on CE
 - Minimize latency, reduce error rates
 - Central job queue
 - Unified treatment of distributed resources
 - SQL DB keeps state critical component
 - Automated brokerage based on CPU and storage resources
 - Automatic error handling and recovery
 - Extensive monitoring
 - Modular design

PanDA Workflow for Production

Kaushik De

December 13, 2012


What is a Job

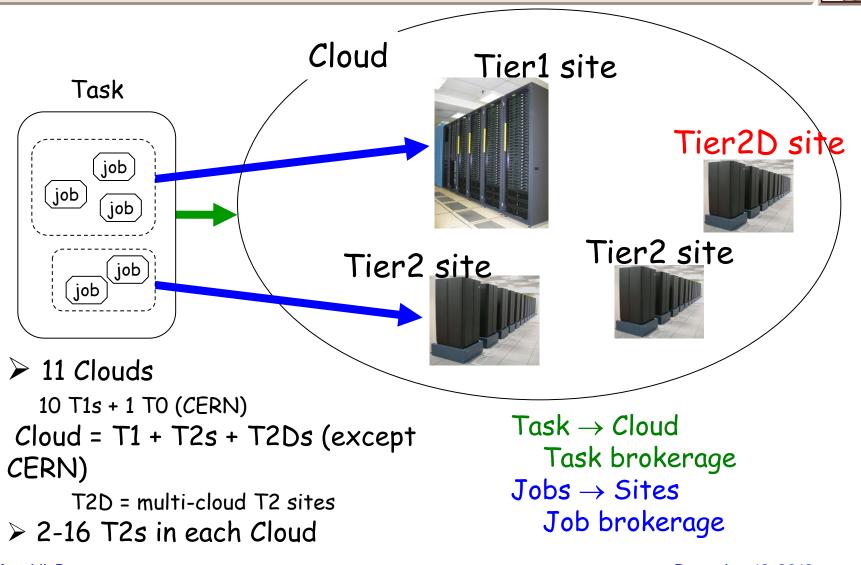
- In PanDA, the basic unit of work is a job:
 - Executed on a CPU resource/slot
 - May have inputs
 - Produces outputs
- ProdSys layer above PanDA to create jobs from ATLAS physics 'tasks'
- User analysis work is divided into jobs by PanDA
- Pilot may run multiple jobs on request

Job States

- Panda jobs go through a succession of steps tracked in DB
 - Defined
 - Assigned
 - Activated
 - Running
 - Holding
 - Transferring
 - Finished/failed

Assigned Jobs

- Assigned -> Activated workflow
 - Group of jobs are assigned to a site by PanDA brokerage
 - For missing input files, data transfer is requested asynchronously
 - PanDA waits for "transfer completed" callback from DDM system to activate jobs for execution
 - Network data transfer plays crucial role in this workflow
- Can network technology help assigned->activated transition?
 - Can we use network provisioning in this step?
 - Jobs are reassigned if transfer times out (fixed duration) can knowledge of network status help reduce the timeout?
 - Can modification of network path help?


Transferring Jobs

Transferring state

- After job execution is completed, asynchronous data transfer is requested from DDM
- Callback is required for successful job completion
- How can network technology help?
 - Similar questions as assigned state
 - Very long timeout delays completion can network status info help
 - Can we balance CPU resource vs Network resource
 - At what point can we give up on transfer and rerun the job?

ATLAS Computing Model

Kaushik De

December 13, 2012

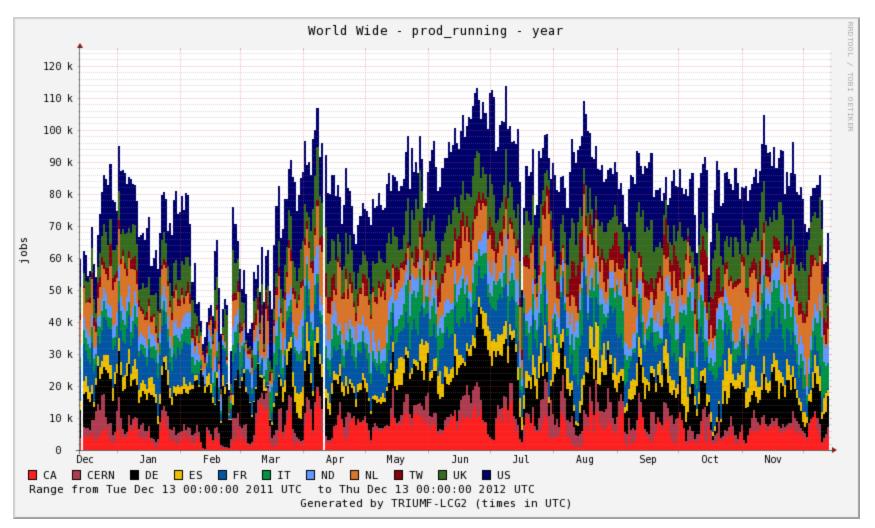
Task Brokerage

- Matchmaking per cloud is based on:
 - Free disk space in T1 SE, MoU share of T1
 - Availability of input dataset (a set of files)
 - The amount of CPU resources = the number of running jobs in the cloud (static information system is not used)
 - Downtime at T1
 - Already queued tasks with equal or higher priorities
 - High priority task can jump over low priority tasks
- Can knowledge of network help
 - Can we consider availability of network as a resource, like we consider storage and CPU resources?
 - What kind of information is useful?
 - Can we consider similar (highlighted)factors for networking?

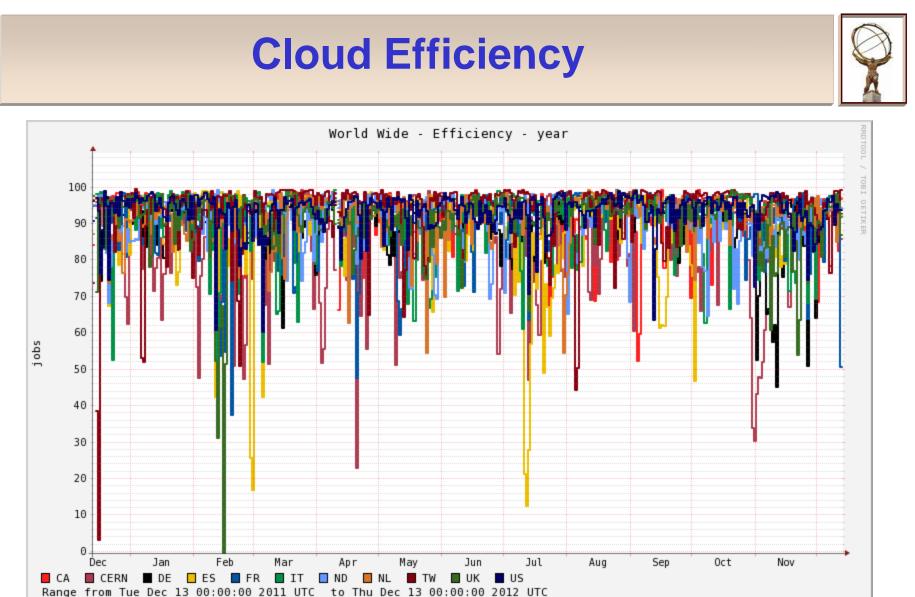
Job Brokerage

- Brokerage policies define job assignment to sites
 - IO intensive or TAPE read -> prefer T1
 - CPU intensive -> T1+T2s
 - Flexible: clouds may allow IO heavy jobs at T2s with low weight
- Matchmaking per site in a cloud
 - Software availability
 - Free disk space in SE, Scratch disk size on Worker Node (WN), Memory size on WN
 - Occupancy = the number of running jobs / the number of queued jobs, and downtime
 - Locality (cache hits) of input files

Networking as a Resource


- Job brokerage is critical function of WMS
 - We currently consider storage and CPU resources only in brokerage
 - Networking is assumed why not treat as a resource to be brokered
 - First, we should try to use network information for site selection
 - Second, can we use provisioning to improve workflow
 - Third, can we improve/modify paths dynamically
 - Plenty of opportunity for future work

Job Dispatcher


- Send matching job to CE upon pilot request
 - REST non-blocking communication
 - Different from brokerage, which is asynchronous
- Matching of jobs based on
 - Data locality
 - Memory and disk space
- Highest priority job is dispatched
- At this point networking is not as important
 - Is this true we still have to transfer output
 - Can we initiate provisioning?

Performance - Production

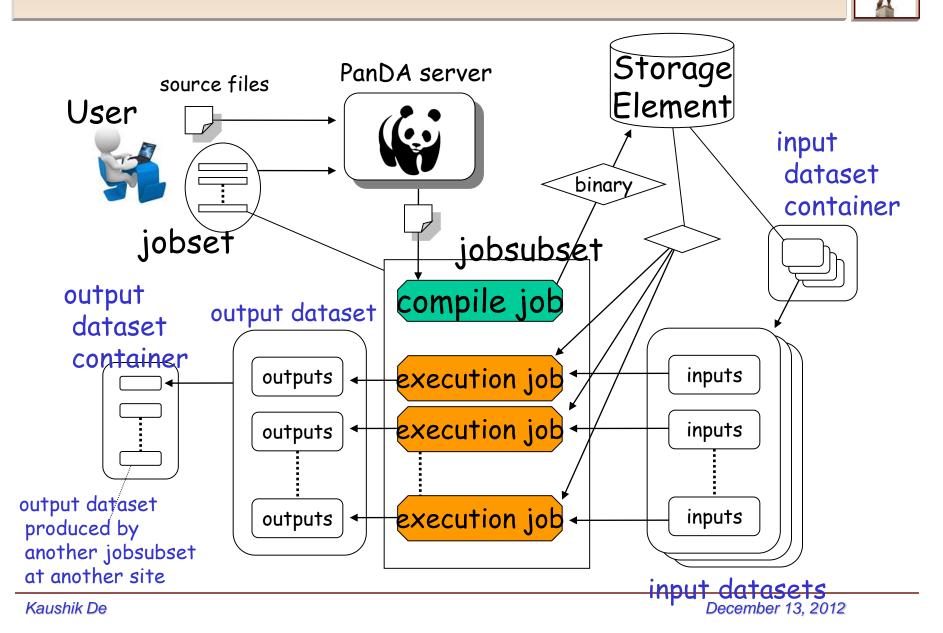
Average number of concurrently running jobs per day

Kaushik De

Generated by TRIUMF-LCG2 (times in UTC)

Average efficiency >95% - mostly site & application errors remain

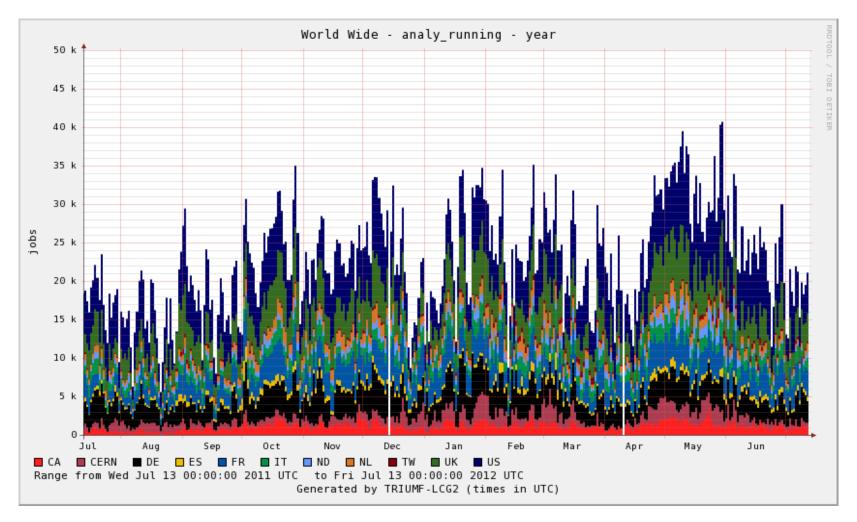
Kaushik De


December 13, 2012

User Analysis in PanDA

- Flexibility in job definition
 - Customization of source by user
 - Adding new algorithms to application (athena) or arbitrary executables
- Fast turnaround for iteration
 - The user submits a user task (jobset) that is converted to many jobs for parallel execution
 - Supports IO intensive workflows
- Jobs go to data
 - No input file dispatch, no output file aggregation from multiple jobs (can be requested)
 - Data Transfer Request Interface (DaTRi) or PD2P (Dynamic Data Placement) options
- Dataset container (a set of datasets) as input and output
- Calculates priority and quotas per user or per working group

User Analysis Work Flow



Analysis Brokerage

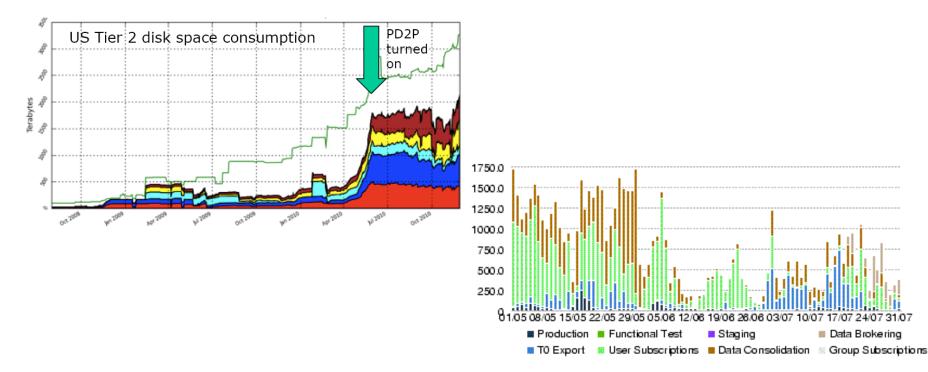
- Works with jobsubset
 - A jobset may be split to be brokered to multiple sites
- Matchmaking per site without cloud-boundaries
 - Scratch disk size on WN, Memory size on WN
 - Software availability, Downtime
 - Occupancy = the number of running jobs / the number of queued jobs
 - Availability of input datasets
- Network is not considered in matchmaking
 - Since job goes to data
 - But is this model good enough?
 - Will this be true when we access data over WAN?

Analysis Performance

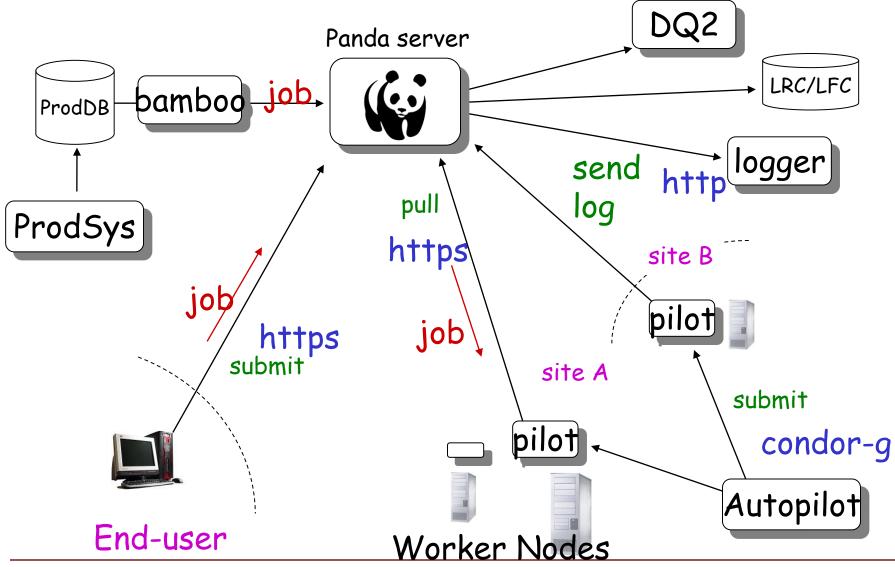
Average number of concurrently running jobs per day

Kaushik De

PD2P – How LHC Model Changed


- PD2P = PanDA Dynamic Data Placement
- PD2P used to distribute data for user analysis
 - For production PanDA schedules all data flows
 - Initial ATLAS computing model assumed pre-placed data distribution for user analysis – PanDA sent jobs to data
 - Soon after LHC data started, we implemented PD2P
- Asynchronous usage based data placement
 - Repeated use of data \rightarrow make additional copies
 - Backlog in processing \rightarrow make additional copies
 - Rebrokerage of queued jobs \rightarrow use new data location
 - Deletion service removes less used data
 - Basically, T2 (and now T1) storage used as cache for user analysis

Network vs Storage


PD2P fundamentally changed computing model

- Decline in storage use
- Change in network usage pattern
- Shown by Michael in ATLAS meeting on Monday

PanDA Interfaces

Kaushik De

December 13, 2012

What is a Pilot Job

- Lightweight execution environment to prepare CE, request actual payload, execute payload, and clean up
- Handles data stage-in and stage-out between worker node disk and local SE
- Pilot jobs started by Job Scheduler(s); actual ATLAS job (payload) is scheduled when CPU becomes available, leading to low latency
- Monitoring thread, job recovery, experiment specific setup and post processing...
- With Federated Storage deployment network becomes an important resource

FAX Integration with PanDA

- Federated Data Storage will be described in other talks
 - For this talk I assume sites have se tup global redirector to access data over WAN
- We have developed detailed plans for integrating FAX with PanDA
 - Networking plays an important role
 - This time we are paying attention to networking from the beginning

FAX for Fault Tolerance

Phase I goal

- If input file cannot be transferred/accessed from local SE, PanDA pilot currently fails the job after a few retries
- We plan to use Federated storage for these (rare) cases
- Start with file staging/transfers using FAX
 - Implemented in recent release of pilot, works fine at two test sites
 - Next step wider scale testing at production/DA sites
- Phase 2
 - Once file transfers work well, try FAX Direct Access
- Phase 3
 - Try FAX for transfer of output files, if default destination fails
- This is now under testing at many sites

FAX for Managed Production

- Managed production has well defined workflow
 - PanDA schedules all input/output file transfers through DQ2
 - DQ2 provides dataset level callback when transfers are completed
- FAX can provide alternate transport mechanism
 - Transfers handled by FAX
 - Dataset level callback provided by FAX
 - Dataset discovery/registration handled by DQ2
- File level callback
 - Recent development use activeMQ for file level callbacks
 - On best effort basis for scalability dataset callbacks still used
 - FAX can use same mechanism
- Work in progress

FAX for Distributed Analysis

- Most challenging and most rewarding
 - Currently, DA jobs are brokered to sites which have input datasets
 - This may limit and slow the execution of DA jobs
 - Use FAX to relax constraint on locality of data
- Use cost metric generated with Hammercloud tests
 - Provides 'typical cost' of data transfer between two sites
- Brokerage will use 'nearby' sites
 - Calculate weight based on usual brokerage criteria (availability of CPU...) plus network transfer cost
 - Jobs will be dispatched to site with best weight not necessarily the site with local data or available CPU's
- Cost metric already available soon to be tested in brokerage

Summary

- In the past WMS assumed:
 - Network is available and ubiquitous
 - As long as we implement timeouts, workflow will progress smoothly
 - Computing models can tell us how to design workflows
- What we learned from the LHC:
 - Flexibility in WMS design is more important than computing model
 - Network evolution drives WMS evolution
 - We should start thinking about Network as resource
 - WMS should use network information actively to optimize workflow
 - Resource provisioning could be important for the future

• The future:

- Advanced Network Services for Experiments (ANSE), NSF funded (Caltech, Michigan, Vanderbilt and U Texas Arlington)
- Next Generation Workload Management and Analysis System for Big Data, PANDA integration with networking, DOE funded (BNL, U Texas Arlington)