Parton Distribution Functions

 α_s , m_q , the gluon density and all that ...

Sven-Olaf Moch

Universität Hamburg & DESY, Zeuthen

LHCPhenoNet Workshop on Particle Physics - Universidad de Buenos Aires, Buenos Aires, Apr 26, 2013

Plan

- Cross sections in perturbative QCD
- Non-perturbative input parameters
 - parton distributions
 - strong coupling $\alpha_s(M_Z)$
- LHC measurements
 - W^{\pm} and Z-boson production
 - top-quark mass
- Implications for electroweak vacuum

Example from LHC Higgs measurements

- Signal strength of all analyzed decay modes
 - normalization to Standard Model expectation
 - accuracy of $\sigma_{
 m SM}$ crucial

QCD factorization

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij \to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Higgs production in gg-fusion

Effective theory

Integration of top-quark loop (finite result)

• decay width $H \rightarrow gg$ ($m_q = 0$ for light quarks, m_t heavy)

$$\Gamma_{H \to gg} = \frac{G_{\mu} m_H^3}{64 \sqrt{2} \pi^3} \alpha_s^2 f\!\left(\frac{m_H^2}{4m_t^2}\right)$$

- Effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
 - operator $HG^{\mu\nu a} G^a_{\mu\nu}$ relates to stress-energy tensor
 - additional renormalization proportional to QCD β-function required Kluberg-Stern, Zuber '75; Collins, Duncan, Joglekar '77

QCD corrections to ggF

- Hadronic cross section $\sigma_{pp
 ightarrow H}$ with $au = m_H^2/S$
 - renormalization/factorization (hard) scale $\mu = \mathcal{O}(m_H)$

$$\sigma_{pp \to H} = \sum_{ij} \int_{\tau}^{1} \frac{dx_1}{x_1} \int_{x_1}^{1} \frac{dx_2}{x_2} f_i\left(\frac{x_1}{x_2}, \mu^2\right) f_j\left(x_2, \mu^2\right) \hat{\sigma}_{ij \to H}\left(\frac{\tau}{x_1}, \frac{\mu^2}{m_H^2}, \alpha_s(\mu^2)\right)$$

• Partonic cross section $\hat{\sigma}_{ij \rightarrow H}$

$$\hat{\sigma}_{ij \to H} = \alpha_s^2 \left[\hat{\sigma}_{ij \to H}^{(0)} + \alpha_s \, \hat{\sigma}_{ij \to H}^{(1)} + \alpha_s^2 \, \hat{\sigma}_{ij \to H}^{(2)} + \dots \right]$$

NLO: standard approximation (large uncertainties)

Perturbation theory at work

- Apparent convergence of perturbative expansion
 - NNLO corrections still large Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - improvement through complete soft N³LO corrections S.M., Vogt '05 or NNLL resummtion Catani, de Florian, Grazzini, Nason '03, Ahrens et al. '10
- Perturbative stability under renormalization scale variation

Non-perturbative parameters

Input for collider phenomenology

- Non-perturbative parameters are universal
- Determination from comparision to experimental data
 - masses of heavy quarks m_c, m_b, m_t
 - parton distribution functions $f_i(x, \mu^2)$
 - strong coupling constant $\alpha_s(M_Z)$

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- Non-perturbative parameters sensitive to
 - radiative corrections at higher orders
 - renormalization and factorization scales μ_R , μ_F
 - chosen scheme (e.g. $(\overline{MS} \text{ scheme})$

• .

Parton evolution

Feynman diagrams in leading order

• Proton in resolution $1/Q \longrightarrow$ sensitive to lower momentum partons

Parton evolution

Feynman diagrams in leading order

Proton in resolution 1/Q
 sensitive to lower momentum partons

- Evolution equations for parton distributions f_i
 - predictions from fits to reference processes (universality)

$$\frac{d}{d\ln\mu^2}f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)\right](x)$$

Splitting functions P

$$P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \dots$$

NLO: standard approximation (large uncertainties)

Parton Distribution Functions – p.9

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Parton luminosity at LHC

- LHC run at $\sqrt{s} = 7/8$ TeV
 - parton kinematics well covered by HERA and fixed target experiments
- Parton kinematics at effective $\langle x \rangle = M/\sqrt{S}$
 - 100 GeV physics: small-x, sea partons
 - TeV scales: large-x

Parton distribution fits

Example

ABM PDF set Alekhin, Blümlein, S.M. '12

Theory considerations

- Consistent theory description for consistent data sets
- Determination of PDFs and strong coupling constant α_s to NNLO QCD
- Consistent scheme for treatment of heavy quarks
 - fixed-flavor number scheme for $n_f = 3, 4, 5$
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
- Full account of error correlations

Data considered in the fit

- Analysis of world data for deep-inelastic scattering and fixed-target data for Drell-Yan process
 - inclusive DIS data HERA, BCDMS, NMC, SLAC
 - Drell-Yan data (fixed target) E-605, E-866
 - neutrino-nucleon DIS data (di-muon production) CCFR/NuTeV

PDF ansatz

- ABM PDFs parameterized at scale $Q_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M. '12
 - ansatz for valence-/sea-quarks, gluon with polynomial P(x)
 - strange quark is taken in charge-symmetric form
 - 24 parameters in polynomials P(x)
 - 4 additional fit parameters: $\alpha_s^{(n_f=3)}(\mu=3 \text{ GeV}), m_c, m_b$ and deuteron correction

$$\begin{aligned} xq_v(x,Q_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xu_s(x,Q_0^2) &= x\bar{u}_s(x,Q_0^2) &= A_{us} x^{a_{us}} (1-x)^{b_{us}} x^{a_{us}} P_{us}(x) \\ x\Delta(x,Q_0^2) &= xd_s(x,Q_0^2) - xu_s(x,Q_0^2) &= A_{\Delta} x^{a_{\Delta}} (1-x)^{b_{\Delta}} x^{P_{\Delta}(x)} \\ xs(x,Q_0^2) &= x\bar{s}(x,Q_0^2) &= A_s x^{a_s} (1-x)^{b_s} , \\ xg(x,Q_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_g(x) \end{aligned}$$

 Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Parton distributions for the LHC

- 1 σ band for ABM11 PDFs (NNLO, 4-flavors) at $\mu = 2 \text{ GeV}$ Alekhin, Blümlein, S.M.'12
- comparison with: JR09 (solid lines), MSTW (dashed dots) and NN21 (dashes)
- Some interesting observations to be made ...

Strong coupling constant

Essential facts

- $\alpha_s(M_Z)$ from e^+e^- data high
- $\alpha_s(M_Z)$ from DIS data low
- World average 1992 $\alpha_s(M_Z) = 0.117 \pm 0.004$

			Q			$\Delta \alpha_s($	$(M_{ m Z^0})$	order of
	Process	Ref.	[GeV]	$lpha_s(Q)$	$lpha_s(M_{\mathrm{Z}^0})$	exp.	theor.	perturb.
1	$R_{ au} \; [{ m LEP}]$	[7 - 10]	1.78	$0.318 \ {}^{+ \ 0.048}_{- \ 0.039}$	$0.117 \stackrel{+ 0.006}{- 0.005}$	+ 0.003 - 0.004	+ 0.005 - 0.004	NNLO
2	$R_{ au} \; [{ m world}]$	[2]	1.78	0.32 ± 0.04	$0.118 \ {}^{+ \ 0.004}_{- \ 0.006}$	-	-	NNLO
3	DIS $[\nu]$	[3]	5.0	$0.193 {}^{+ \ 0.019}_{- \ 0.018}$	$0.111 \stackrel{+ 0.006}{- 0.007}$	+ 0.004 - 0.006	0.004	NLO
4	DIS $[\mu]$	[12]	7.1	0.180 ± 0.014	0.113 ± 0.005	0.003	0.004	NLO
5	$J/\Psi, \Upsilon$ decay	[4]	10.0	$0.167 {}^{+ \ 0.015}_{- \ 0.011}$	$0.113 \ {}^{+ \ 0.007}_{- \ 0.005}$	-	-	NLO
6	$e^+e^-~[\sigma_{had}]$	[14]	34.0	0.163 ± 0.022	0.135 ± 0.015	-	-	NNLO
7	e^+e^- [shapes]	[15]	35.0	0.14 ± 0.02	0.119 ± 0.014	-	-	NLO
8	$par{p} ightarrow bar{b}X$	[11]	20.0	$0.136 \stackrel{+ 0.025}{- 0.024}$	$0.108 \stackrel{+ 0.015}{- 0.014}$	0.006	+ 0.014 - 0.013	NLO
9	$p \bar{p} \rightarrow W \ jets$	[13]	80.6	0.123 ± 0.027	0.121 ± 0.026	0.018	0.020	NLO
10	$\Gamma(\mathrm{Z}^{_0} ightarrow \mathrm{had.})$	[5]	91.2	0.133 ± 0.012	0.133 ± 0.012	0.012	+ 0.003 - 0.001	NNLO
	_							
11	${ m Z}^{_0}$ ev. shapes							
	ALEPH	[7]	91.2	$0.119 \stackrel{+}{-} \stackrel{0.008}{-} \stackrel{0.010}{}$		-	-	NLO
	DELPHI	[8]	91.2	0.113 ± 0.007		0.002	0.007	NLO
	L3	[9]	91.2	0.118 ± 0.010		-	-	NLO
	OPAL	[10]	91.2	$0.122 \stackrel{+}{-} \stackrel{0.006}{_{-}}$		0.001	+ 0.006	NLO
	SLD	[6]	91.2	$0.120 \stackrel{+}{}_{-} \stackrel{0.015}{}_{-} \stackrel{0.013}{}_{-}$		0.009	+ 0.012 - 0.009	NLO
	Average	[6-10]	91.2		0.119 ± 0.006	0.001	0.006	NLO
	-0							
12	Z ⁰ ev. shapes							
	ALEPH	[7]	91.2	0.125 ± 0.005		0.002	0.004	resum.
	DELPHI	[8]	91.2	0.122 ± 0.006		0.002	0.006	resum.
	L3	[9]	91.2	0.126 ± 0.009		0.003	0.008	resum.
	OPAL		91.2	$0.122 \stackrel{+}{-} \stackrel{0.003}{_{-}}$		0.001	- 0.003	resum.
	Average	[7-10]	91.2		0.123 ± 0.005	0.001	0.005	resum.

Table 1: Summary of measurements of α_s . For details see text.

$\alpha_s 2012$

Bethke in PDG 2012

World average for $\alpha_s(M_Z)$ based on arithmetic average of (pre-averaged) ٠ $\alpha_s(M_Z)$ values from different methods/processes

α_s from DIS and PDFs

• Profile of χ^2 for different data sets in ABM11 PDF fit Alekhin, Blümlein, S.M. '12

Comparison of α_s determinations

- Differences in α_s values:
 - result from different physics models and analysis procedures
 - target mass corrections (powers of nucleon mass M_N^2/Q^2)
 - higher twist $F_2^{\text{ht}} = F_2 + ht^{(4)}(x)/Q^2 + ht^{(6)}(x)/Q^4 + \dots$
 - error correlations
- Effects for differences between ABM, MSTW and NN21 understood
 - variants of ABM with no higher twist etc. reproduce larger α_s values

	α_s at NNLO	target mass corr.	higher twist	error correl.
ABM11	0.1134 ± 0.0011	yes	yes	yes
NNPDF21	0.1166 ± 0.0008	yes	no	yes
MSTW	0.1171 ± 0.0014	no	no	no

Impact on Higgs production rates

- Rates for Higgs production at LHC for $m_H = 125 \text{ GeV}$
- Cross section differences of $\mathcal{O}(10\%)$
 - diferences are statistically significant wrt. to PDF uncertainty

LHC at $\sqrt{s} = 7$ TeV	ABM11	MSTW
$\sigma(H)$ [pb]	$13.23 \begin{array}{c} +1.35 \\ -1.31 \end{array} \begin{array}{c} +0.30 \\ -0.30 \end{array}$	$14.39 \ {}^{+1.54}_{-1.47} \ {}^{+0.17}_{-0.22}$

LHC at $\sqrt{s} = 8$ TeV	ABM11	MSTW
$\sigma(H)$ [pb]	$16.99 {}^{+1.69}_{-1.63} {}^{+0.37}_{-0.37}$	$18.36 \begin{array}{c} +1.92 \\ -1.82 \end{array} \begin{array}{c} +0.21 \\ -0.28 \end{array}$

LHC measurements

General remarks

- QCD corrections important
 - require theory predictions to NNLO accuracy
- PDF fits with 3-flavors for DIS, 5-flavors for jets (matching from 3 to 5-flavors)
 - QCD evolution over large range

Benchmark processes

- W^{\pm} and Z-boson production
- top-quark hadro-production

Drell-Yan codes at NNLO

• DYNNLO 1.3 provides better numerical stability for the W-production in central region (\sim 200h) Catani, Cieri, Ferrera, de Florian, Grazzini '09

- FEWZ 3.1 more convenient/stable for estimation of the PDF uncertainties (~ 2d x 24 processors) Li, Petriello '12
- Central values are computed with DYNNLO and the PDF errors are obtained with FEWZ

Sven-Olaf Moch

Benchmarking of ABM11 PDFs

Comparision with LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

Good overall agreement with data of CMS '10 and LHCb '12, '13

Sven-Olaf Moch

Benchmarking of ABM11 PDFs

Comparision with LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

LHCb (7 TeV, 37 1/pb)

Good overall agreement with data of CMS '10 and LHCb '12, '13

Benchmarking of ABM11 PDFs

Comparison with LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

Experiment	ATLAS '11	CMS '12	LHCb '12	LHCb '13
Final states	$W^+ \to l^+ \nu$	$W^+ \to e^+ \nu$	$W^+ o \mu^+ \nu$	$Z \rightarrow e^+ e^-$
	$W^- ightarrow l^- u$	$W^- \to e^- \nu$	$W^- o \mu^- u$	
	$Z ightarrow l^+ l^-$			
Luminosity (1/pb)	35	840	37	940
NDP	30	11	10	9
χ^2	35.7(7.7)	10.6(4.7)	13.1(4.5)	11.3(4.2)

- value of χ^2 for Drell-Yan data at the LHC with NNLO ABM11 PDFs (+ one standard deviation of χ^2 equal to $\sqrt{2NDP}$)
- ABM11 benchmarking in arXiv:1211.5142 reports wrong χ^2 values for PDF comparison (NLO MCFM with K-factors, no PDF errors, shifted α_s)

Update of PDF benchmarking

Recent LHCb result LHCb '13

CT10: 9.8 ABM11: 11.3

•

Drell Yan data in global fit

Current technology

- (N)NLO calculations are quite time-consuming; fast tools are employed (FASTNLO, Applegrid,.....)
 - corrections for certain basis of PDFs stored in grid
 - fitted PDFs are expanded over the basis
 - (N)NLO cross section in PDF fit calculated as combination of expansion coefficients with pre-prepared grids

Drell Yan data in global fit

Further optimization

- General PDF basis not necessary (PDFs already constrained by data)
- Use PDF basis provided by eigenvalue PDF sets obtained in previous version of fit
 - $P_0 \pm \Delta P_0$ (vector of PDF parameters with errors from previous fit)
 - E: error matrix
 - *P*: current value of PDF parameters in fit
- Iterative cycle
 - store (N)NLO cross section for all PDF sets defined by eigenvectors of E
 - transform variation of fitted PDF parameters $(P P_0)$ into this eigenvector basis
 - calculate (N)NLO cross section in PDF fit as combination of transformed $(P P_0)$ with stored eigenvector values

Top-quark pair-production

Exact result at NNLO in QCD

Czakon, Fiedler, Mitov '13

Illustration of mass dependence for Tevatron

- NNLO perturbative corrections (e.g. at LHC8)
 - K-factor (NLO \rightarrow NNLO) of $\mathcal{O}(10\%)$
 - scale stability at NNLO of $\mathcal{O}(\pm 5\%)$

Sven-Olaf Moch

Heavy-quark masses in Standard Model

- Higgs boson gives mass to matter fields via Higgs-Yukawa coupling
 - large top quark mass m_t

QCD

Classical part of QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_b + \sum_{\text{flavors}} \bar{q}_i \left(i \not\!\!D - m_q \right)_{ij} q_j$$

- field strength tensor $F^a_{\mu\nu}$ and matter fields q_i, \bar{q}_j
- covariant derivative $D_{\mu,ij} = \partial_{\mu} \delta_{ij} + ig_s (t_a)_{ij} A^a_{\mu}$
- Formal parameters of the theory (no observables)
 - strong coupling $\alpha_s = g_s^2/(4\pi)$
 - quark masses m_q

Challenge

- Suitable observables for measurements of α_s , m_q , ...
 - comparison of theory predictions and experimental data

Heavy-quark mass renormalization

Pole mass

Based on (unphysical) concept of top-quark being a free parton

- heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$
- Definition of pole mass ambiguous up to corrections $\mathcal{O}(\Lambda_{QCD})$
 - bound from lattice QCD: $\Delta m_q \ge 0.7 \cdot \Lambda_{QCD} \simeq 200 \text{ MeV}$ Bauer, Bali, Pineda '11

Running quark masses

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering $m_{
 m pole} = m_{
 m short\ distance} + \delta m$
 - conversion between m_{pole} and \overline{MS} mass $m(\mu_R)$ perturbation theory

Total cross section with running mass

Comparison pole mass vs. \overline{MS} mass

- good apparent convergence of perturbative expansion
- small theoretical uncertainity form scale variation

Sven-Olaf Moch

Top mass from total cross section

• Total top quark cross section as function of \overline{MS} mass Langenfeld, S.M., Uwer '09

Tevatron

- Determine top quark mass from Tevatron cross section data
 - $\sigma_{t\bar{t}} = 7.56^{+0.63}_{-0.56}$ pb D0 coll. arXiv:1105.5384
 - $\sigma_{t\bar{t}} = 7.50^{+0.48}_{-0.48}$ pb CDF coll. CDF-note-9913
- Fit of m_t for individual PDFs
 - parton luminosity at Tevatron driven by $q\bar{q}$
 - \overline{MS} -scheme for $m_t^{\overline{MS}}(m_t)$, then scheme transformation to pole mass m_t^{pole} at NNLO

	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{ ext{MS}}}(m_t)$	$162.0^{+2.3}_{-2.3}{}^{+0.7}_{-0.6}$	$163.5^{+2.2}_{-2.2}{}^{+0.6}_{-0.2}$	$163.2^{+2.2}_{-2.2}{}^{+0.7}_{-0.8}$	$164.4 {}^{+2.2}_{-2.2} {}^{+0.8}_{-0.2}$
$m_t^{ m pole}$	$171.7 {}^{+2.4}_{-2.4} {}^{+0.7}_{-0.6}$	$173.3^{+2.3}_{-2.3}{}^{+0.7}_{-0.2}$	$173.4^{+2.3}_{-2.3}{}^{+0.8}_{-0.8}$	$174.9^{+2.3}_{-2.3}{}^{+0.8}_{-0.3}$
($m_t^{ m pole}$)	$(169.9^{+2.4}_{-2.4}{}^{+1.2}_{-1.6})$	$(171.4^{+2.3}_{-2.3}{}^{+1.2}_{-1.1})$	$(171.3^{+2.3}_{-2.3}{}^{+1.4}_{-1.8})$	$(172.7 {}^{+2.3}_{-2.3} {}^{+1.4}_{-1.2})$

• Good consistency within errors for $m_t^{\text{pole}} = 171.7 \dots 174.9$ at NNLO

The fine print

Intrinsic limitation of sensitivity in total cross section

$$\left|\frac{\Delta\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}\right| \simeq 5 \times \left|\frac{\Delta m_t}{m_t}\right|$$

- Cross section at LHC has correlation of m_t , $\alpha_S(M_Z)$, gluon PDF $\sigma_{t\bar{t}} \sim \alpha_s^2 m_t^2 g(x) \otimes g(x)$
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 2.5 \dots 5 \cdot 10^{-2}$
 - fit with fixed values of m_t and $\alpha_S(M_Z)$ carries significant bias Czakon, Mangano, Mitov, Rojo '13

The fine print

- Fit with correlations
 - g(x) and $\alpha_s(M_Z)$ already well constrained by global fit (no changes)
 - for fit with $\chi^2/NDP = 5/5$ obtain value of $m_t(m_t) = 162$ GeV Alekhin, Blümlein, S.M. [in progress]

Higgs potential

Renormalization group equation

- Quantum corrections to Higgs potential $V(\Phi) = \lambda \left| \Phi^{\dagger} \Phi \frac{v}{2} \right|^2$
- Radiative corrections to Higgs self-coupling λ
 - electro-weak couplings g and g' of SU(2) and U(1)
 - top-Yukawa coupling y_t

$$16\pi^2 \frac{d\lambda}{dQ} = 24\lambda^2 - \left(3g'^2 + 9g^2 - 12y_t^2\right)\lambda + \frac{3}{8}g'^4 + \frac{3}{4}g'^2g^2 + \frac{9}{8}g^4 - 6y_t^4 + \dots$$

Higgs potential

Triviality

- Large mass implies large λ
 - renormalization group equation dominated by first term

$$16\pi^2 \frac{d\lambda}{dQ} \simeq 24\lambda^2 \longrightarrow \lambda(Q) = \frac{m_H^2}{2v^2 - \frac{3}{2\pi^2}m_H^2 \ln(Q/v)}$$

- $\lambda(Q)$ increases with Q
- Landau pole implies cut-off Λ
 - scale of new physics smaller than Λ to restore stability
 - upper bound on m_H for fixed Λ

$$\Lambda \le v \exp\left(\frac{4\pi^2 v^2}{3m_H^2}\right)$$

- Triviality for $\Lambda \to \infty$
 - vanishing self-coupling $\lambda \rightarrow 0$ (no interaction)

Higgs potential

Vacuum stability

- Small mass
 - renormalization group equation dominated by y_t

$$16\pi^2 \frac{d\lambda}{dQ} \simeq -6y_t^4 \longrightarrow \lambda(Q) = \lambda_0 - \frac{\frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)}{1 - \frac{9}{16\pi^2} y_0^2 \ln(Q/Q_0)}$$

- $\lambda(Q)$ decreases with Q
- Higgs potential unbounded from below for $\lambda < 0$
- $\lambda = 0$ for $\lambda_0 \simeq \frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)$
- Vacuum stability

$$\Lambda \le v \exp\left(\frac{4\pi^2 m_H^2}{3y_t^4 v^2}\right)$$

- scale of new physics smaller than Λ to ensure vacuum stability
- lower bound on m_H for fixed Λ

Implications on electroweak vacuum

- Relation between Higgs mass m_H and top quark mass m_t
 - condition of absolute stability of electroweak vacuum $\lambda(\mu) \ge 0$
 - extrapolation of Standard Model up to Planck scale M_P
 - $\lambda(M_P) \ge 0$ implies lower bound on Higgs mass m_H

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

- recent NNLO analyses Bezrukov, Kalmykov, Kniehl, Shaposhnikov '12;
 Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12
- uncertainity in results due to α_s and m_t (pole mass scheme)
- Top quark mass from Tevatron in well-defined scheme
 - $m_t^{\overline{\text{MS}}}(m_t) = 163.3 \pm 2.7 \text{ GeV}$ implies in pole mass scheme $m_t^{\text{pole}} = 173.3 \pm 2.8 \text{ GeV}$
 - good consistency of mass value between different PDF sets

Fate of the universe

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12, Alekhin, Djouadi, S.M. '12, Masina '12

- Uncertainty in Higgs bound due to m_t from in \overline{MS} scheme
 - bound relaxes $m_H \ge 129.4 \pm 5.6 \text{ GeV}$
 - "fate of universe" still undecided

Summary

Physics at the Terascale

- Discovery of (SM like) Higgs boson opens new avenue for studies of Standard Model physics and beyond
- Precision determinations of non-perturbative parameters is essential
 - masses m_t , M_W , m_H , ...
 - coupling constants $\alpha_s(M_Z)$
 - parton content of proton (PDFs)
- Precision measurements require careful definition of observable
 - top-quark mass m_t in well defined scheme
- Radiative corrections at higher orders in QCD and EW are mandatory
 - continuous benchmarking mandatory
 - theory improvements driven by experimental precision
- Lots of challenging tasks for young researchers