Unsafe but Calculable

Ratio Observables in Perturbative QCD

Jesse Thaler

Pliit

Based on 1307.1699 with Andrew Larkoski

Boost 2013, Flagstaff — August 14, 2013

Outline

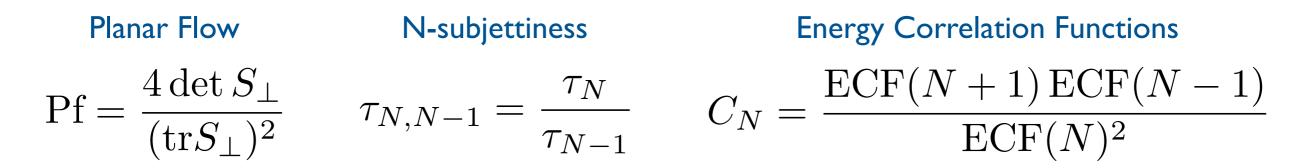
Ratio Observables: Ubiquitous & Unsafe

Ratios of Angularities: "Sudakov Safe"

Calculational Results

Ratio Observables: Ubiquitous & Unsafe

For jet substructure, often dimensionless ratios

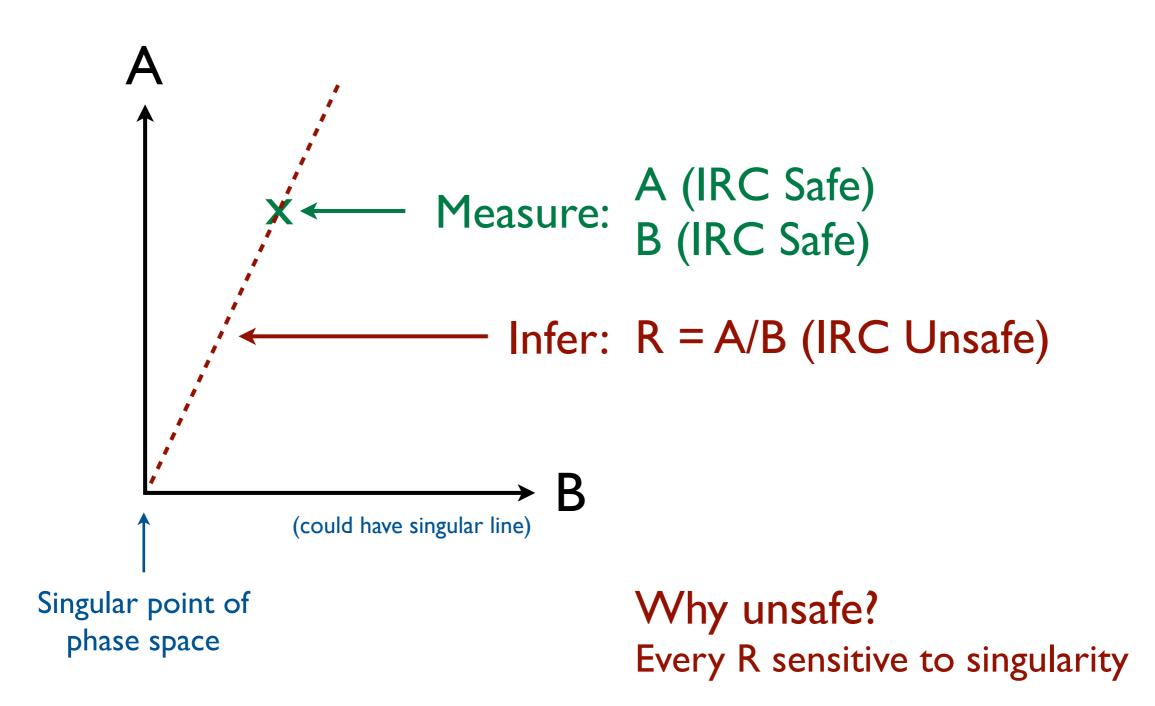


Motivated by quasi-scale-invariant nature of QCD

Surprising/Frustrating Fact: IRC Unsafe Ratio = IRC Safe Numerator IRC Safe Denominator

[observed by Soyez, Salam, Kim, Dutta, Cacciari]

WHAT?! Safe/Safe = Unsafe?!



Simple Example Mass/Energy = Unsafe

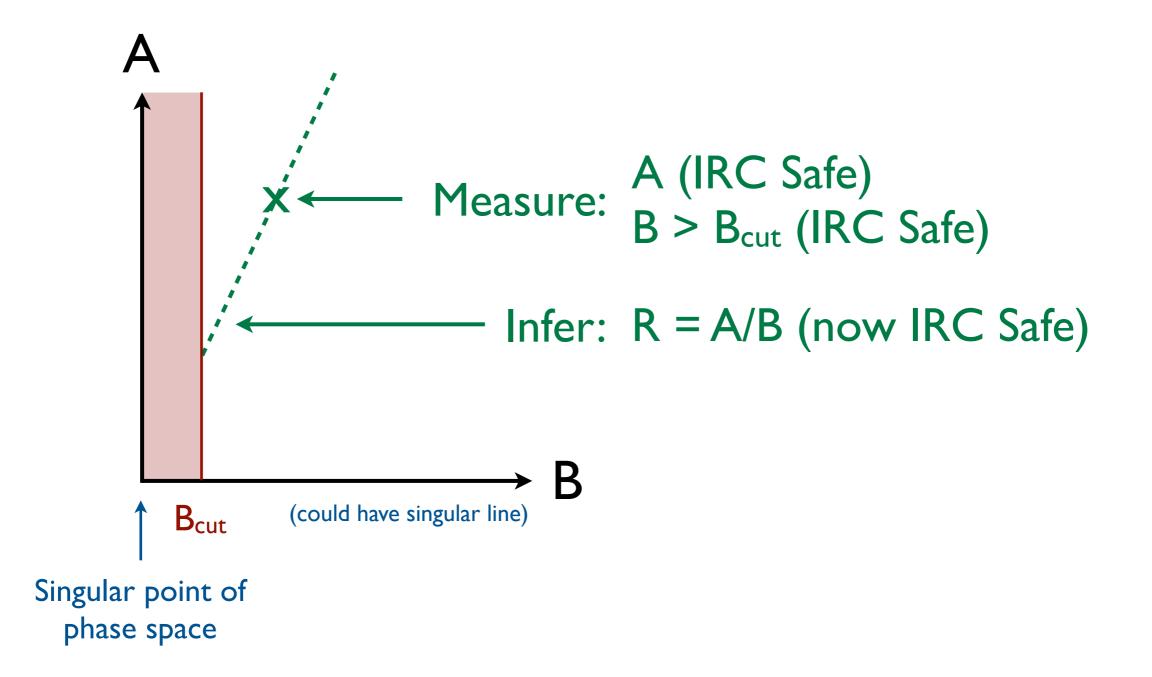
IRC Unsafe: Take soft limit $E_1, E_2 \rightarrow 0$ with x, θ_{12} fixed Get arbitrary answer

Complaint: But if $E_1, E_2 \rightarrow 0$, no jet to measure

Solution: Require $E > E_{cut}$

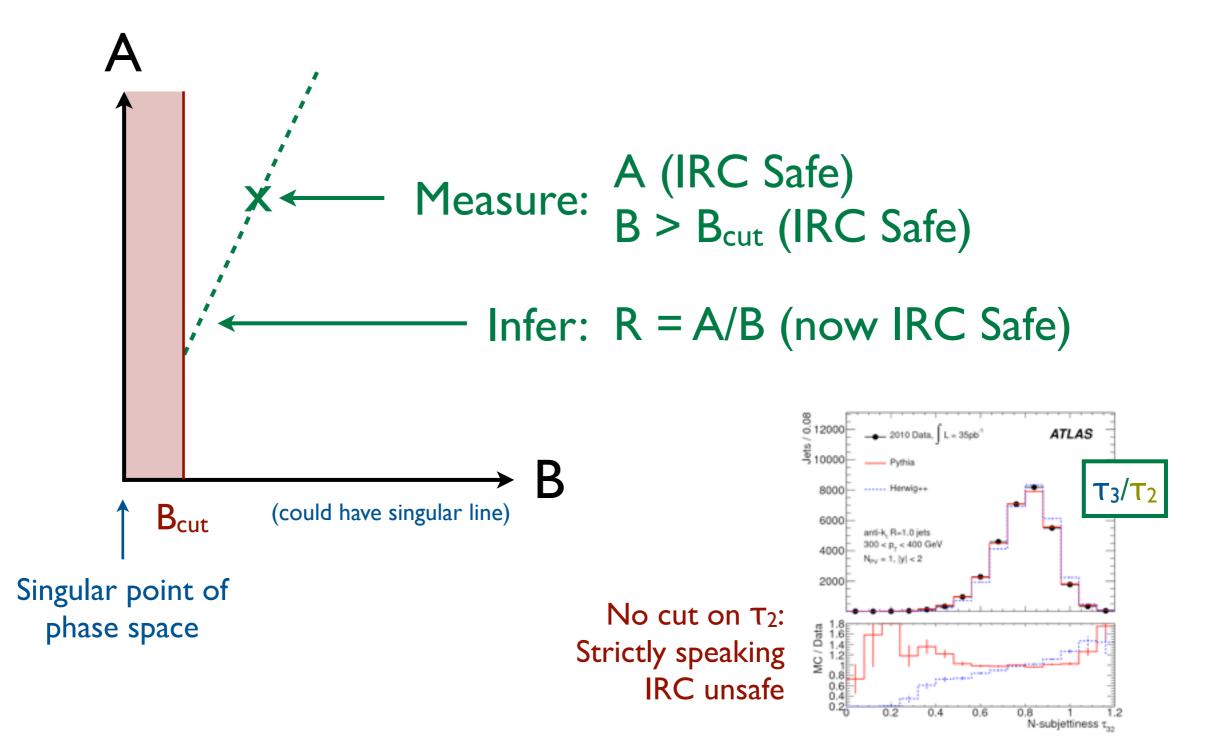
Ah, ok.

Have to put cut on the denominator



Ah, ok.

Have to put cut on the denominator



Surprising/Frustrating Fact: IRC Unsafe Ratio = IRC Safe Numerator IRC Safe Denominator

Ratios observables not calculable at any fixed order in α_s (unless you cut on the denominator)

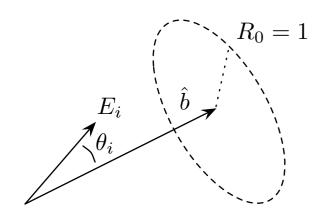
Surprising Resolution:

Ratios observables are calculable in QCD if one accounts for all orders in α_s (even without a cut)

Corollary: Parton showers capture the dominant behavior of ratio observables

Ratios of Angularities

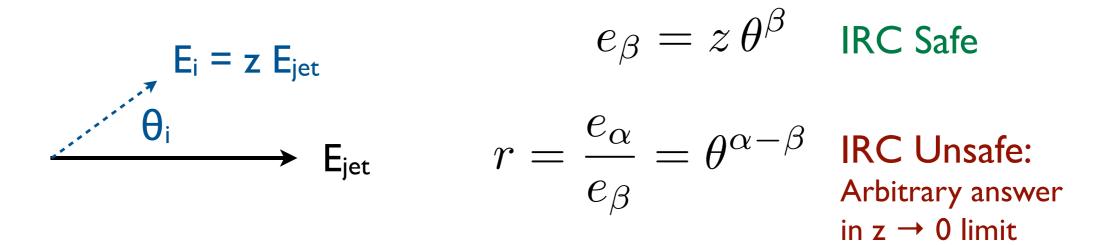
Simplest Test Case



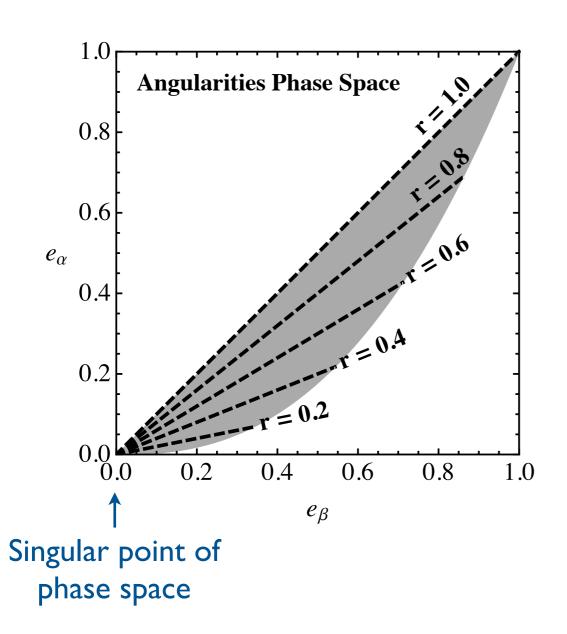
$$e_{\beta} = \frac{1}{E_{\text{jet}}} \sum_{i} E_{i} (\theta_{i})^{\beta} \qquad \begin{array}{l} \beta = 1: \text{ Broadening} \\ \beta = 2: \text{ Thrust} \approx \text{m}^{2}/\text{E}^{2} \end{array}$$

Recoil subtlety: Measure angles with respect to "broadening axis" Alternative: Energy-energy correlation function with same β , i.e. $C_1^{(\beta)}$

In soft & collinear limit (single emission):



Angularities Phase Space



$$e_{\beta} = \sum_{i} z_{i}(\theta_{i})^{\beta} \qquad r = \frac{e_{\alpha}}{e_{\beta}}$$

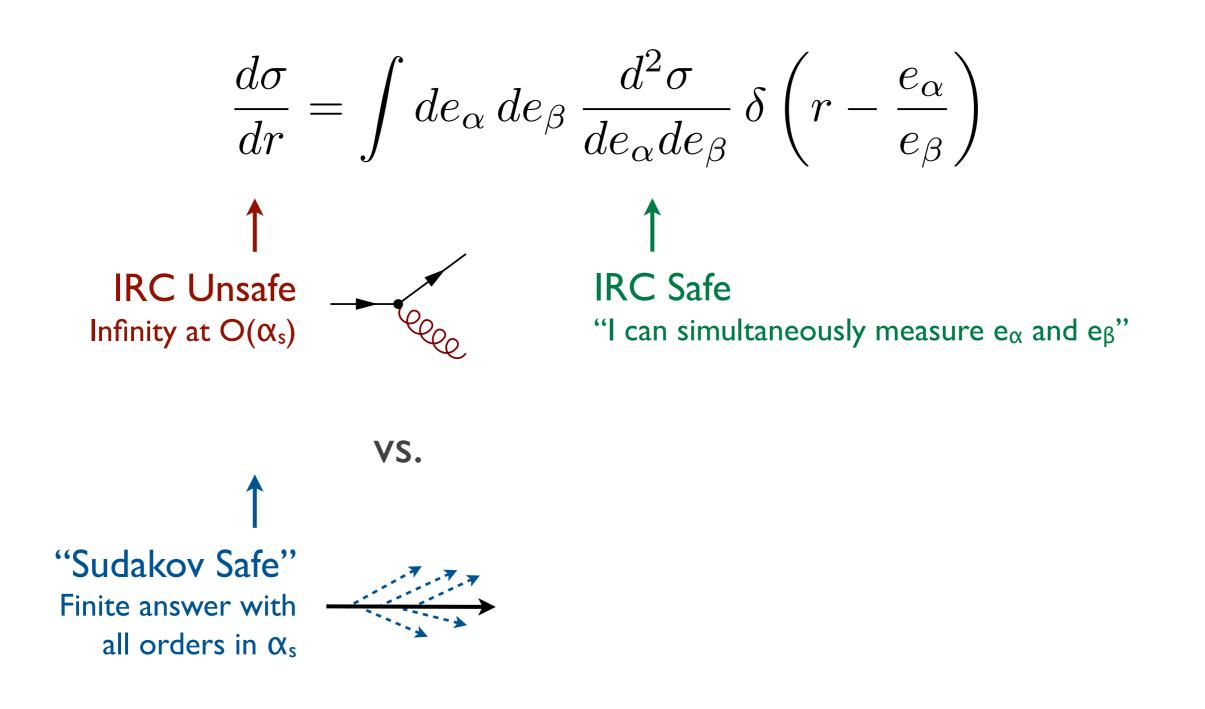
For $\alpha > \beta$ (set R = I): $0 < e_{\alpha} < e_{\beta}$ (0 < r < 1)

> Single emission: $(e_{\alpha})^{\beta} > (e_{\beta})^{\alpha}$

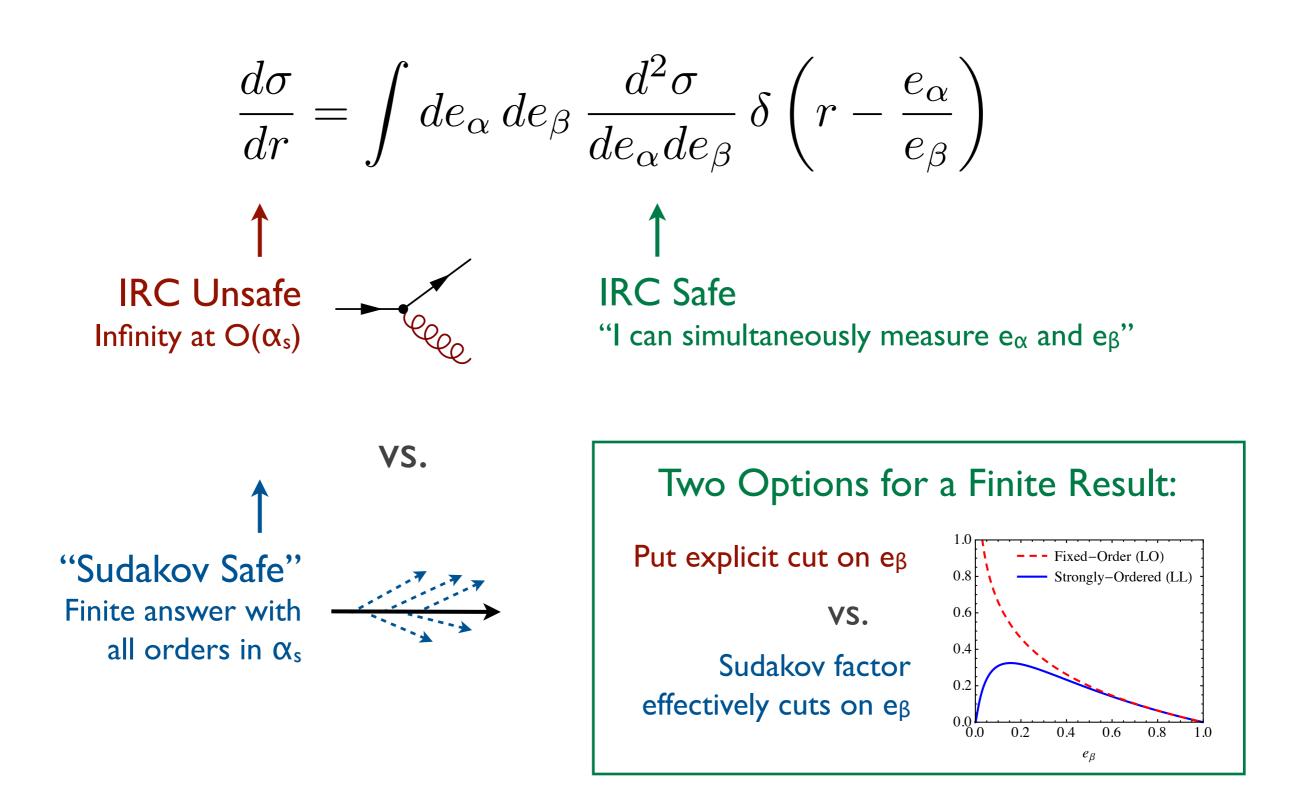
IRC Unsafe:

Each r has real emission singularity, but virtual diagrams only have "r = 0" singularity

Fixed-Order vs. Strongly-Ordered



Fixed-Order vs. Strongly-Ordered



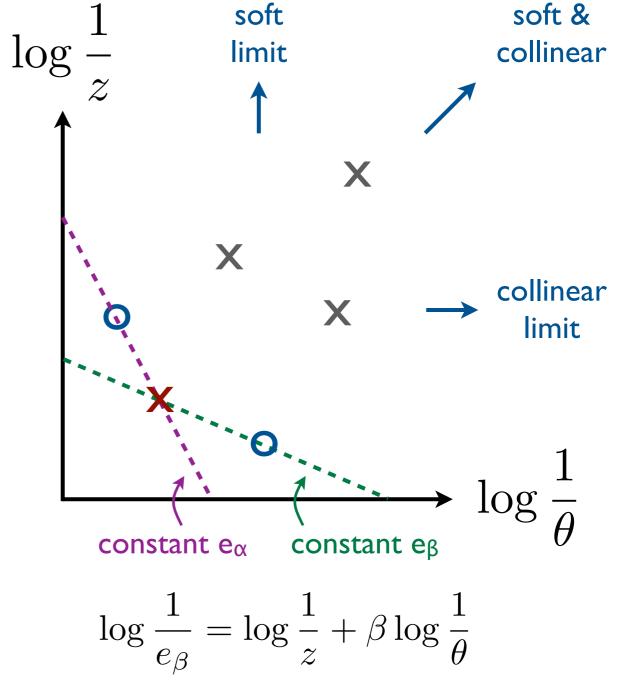
In Strongly-Ordered Limit

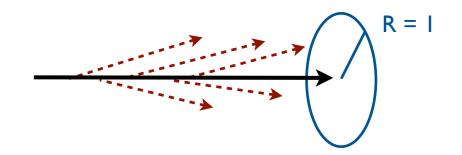
 e_{α}

Recall introductory talk (set R = I)

$$e_{\beta} = z \, \theta^{\beta}$$
 $r = \frac{c_{\alpha}}{e_{\beta}}$

One emission (x) can set both $e_{\alpha} \& e_{\beta}$, or can be set by two different (o) emissions.





In Strongly-Ordered Limit Recall introductory talk (set R = I) $e_{\beta} = z \,\theta^{\beta}$ $r = \frac{e_{\alpha}}{e_{\beta}}$ $\log \frac{1}{z}$ soft limit One emission (x) can set both eq. & eq.

One emission (x) can set both $e_{\alpha} \& e_{\beta}$, or can be set by two different (o) emissions.

Sudakov Factor

(probability to get measurement below a certain value of both e_{α} & e_{β})

$$\Delta(e_{\alpha}, e_{\beta}) = e^{-\frac{2\alpha_s C_F}{\pi}}$$

Captures leading logs of $e_{\alpha} \& e_{\beta}$ distribution

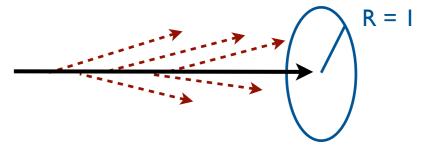
soft &

collinear

collinear

limit

 $\log \frac{1}{\theta}$



Х

Χ

constant e_{β}

 $\log \frac{1}{e_\beta} = \log \frac{1}{z} + \beta \log \frac{1}{A}$

Χ

constant e_{α}

Sudakov Factor:

$$\Delta(e_{\alpha}, e_{\beta}) = \exp\left[-\frac{2\alpha_s C_F}{\pi}\right]$$

Double Differential Cross Section:

$$\frac{d^2 \sigma^{\mathrm{LL}}}{de_{\alpha} de_{\beta}} = \frac{\partial}{\partial e_{\alpha}} \frac{\partial}{\partial e_{\beta}} \Delta(e_{\alpha}, e_{\beta})$$

Ratio Cross Section:

$$\frac{d\sigma^{\rm LL}}{dr} = \int de_{\alpha} \, de_{\beta} \, \frac{d^2 \sigma^{\rm LL}}{de_{\alpha} de_{\beta}} \, \delta\left(r - \frac{e_{\alpha}}{e_{\beta}}\right)$$

Sudakov Factor:

$$\Delta(e_{\alpha}, e_{\beta}) = \exp\left[-\frac{\alpha_s}{\pi} C_F\left(\frac{1}{\beta}\log^2 e_{\beta} + \frac{1}{\alpha - \beta}\log^2 \frac{e_{\alpha}}{e_{\beta}}\right)\right]$$

Double Differential Cross Section:

$$\frac{d^2 \sigma^{\rm LL}}{de_\alpha \, de_\beta} =$$

Ratio Cross Section:

$$\frac{d\sigma^{\rm LL}}{dr} =$$

Sudakov Factor:

$$\Delta(e_{\alpha}, e_{\beta}) = \exp\left[-\frac{\alpha_s}{\pi} C_F\left(\frac{1}{\beta}\log^2 e_{\beta} + \frac{1}{\alpha - \beta}\log^2 \frac{e_{\alpha}}{e_{\beta}}\right)\right]$$

Double Differential Cross Section:

$$\frac{d^2 \sigma^{\text{LL}}}{de_{\alpha} de_{\beta}} = \left(\frac{2\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{1}{e_{\alpha} e_{\beta}} + \frac{4\alpha_s^2}{\pi^2} \frac{C_F^2}{\beta(\alpha - \beta)^2} \frac{1}{e_{\alpha} e_{\beta}} \log \frac{e_{\beta}}{e_{\alpha}} \log \frac{e_{\beta}^2}{e_{\beta}^2}\right) \Delta(e_{\alpha}, e_{\beta})$$

(Cross check: Reduces to known single differential)

Ratio Cross Section:

$$\frac{d\sigma^{\rm LL}}{dr} =$$

Sudakov Factor:

$$\Delta(e_{\alpha}, e_{\beta}) = \exp\left[-\frac{\alpha_s}{\pi} C_F\left(\frac{1}{\beta}\log^2 e_{\beta} + \frac{1}{\alpha - \beta}\log^2 \frac{e_{\alpha}}{e_{\beta}}\right)\right]$$

Double Differential Cross Section:

$$\frac{d^2 \sigma^{\text{LL}}}{de_{\alpha} de_{\beta}} = \left(\frac{2\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{1}{e_{\alpha} e_{\beta}} + \frac{4\alpha_s^2}{\pi^2} \frac{C_F^2}{\beta(\alpha - \beta)^2} \frac{1}{e_{\alpha} e_{\beta}} \log \frac{e_{\beta}}{e_{\alpha}} \log \frac{e_{\beta}^2}{e_{\beta}^2}\right) \Delta(e_{\alpha}, e_{\beta})$$

(Cross check: Reduces to known single differential)

Ratio Cross Section:

$$\frac{d\sigma^{\mathrm{LL}}}{dr} = \frac{\sqrt{\alpha_s C_F \beta}}{\alpha - \beta} \frac{1}{r} \left(1 - 2\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r\right) \left(\operatorname{erf} \left[\frac{\sqrt{\alpha_s C_F \beta}}{\sqrt{\pi}(\alpha - \beta)} \log r \right] + 1 \right) e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} - 2\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{\log r}{r} e^{-\frac{\alpha_s}{\pi} C_F \frac{\alpha}{(\alpha - \beta)^2} \log^2 r} \right) e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} = \frac{\sqrt{\alpha_s C_F \beta}}{\pi} e^{-\frac{\alpha_s}{\pi} C_F \frac{\alpha}{(\alpha - \beta)^2} \log^2 r} + 1 e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} + 1 e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} = \frac{\sqrt{\alpha_s C_F \beta}}{\pi} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} + 1 e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta$$

Ratio Cross Section:

$$\frac{d\sigma^{\mathrm{LL}}}{dr} = \frac{\sqrt{\alpha_s C_F \beta}}{\alpha - \beta} \frac{1}{r} \left(1 - 2\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r \right) \left(\operatorname{erf} \left[\frac{\sqrt{\alpha_s C_F \beta}}{\sqrt{\pi}(\alpha - \beta)} \log r \right] + 1 \right) e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} - 2\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{\log r}{r} e^{-\frac{\alpha_s}{\pi} C_F \frac{\alpha}{(\alpha - \beta)^2} \log^2 r} \right)$$

Expanded in small α_s :

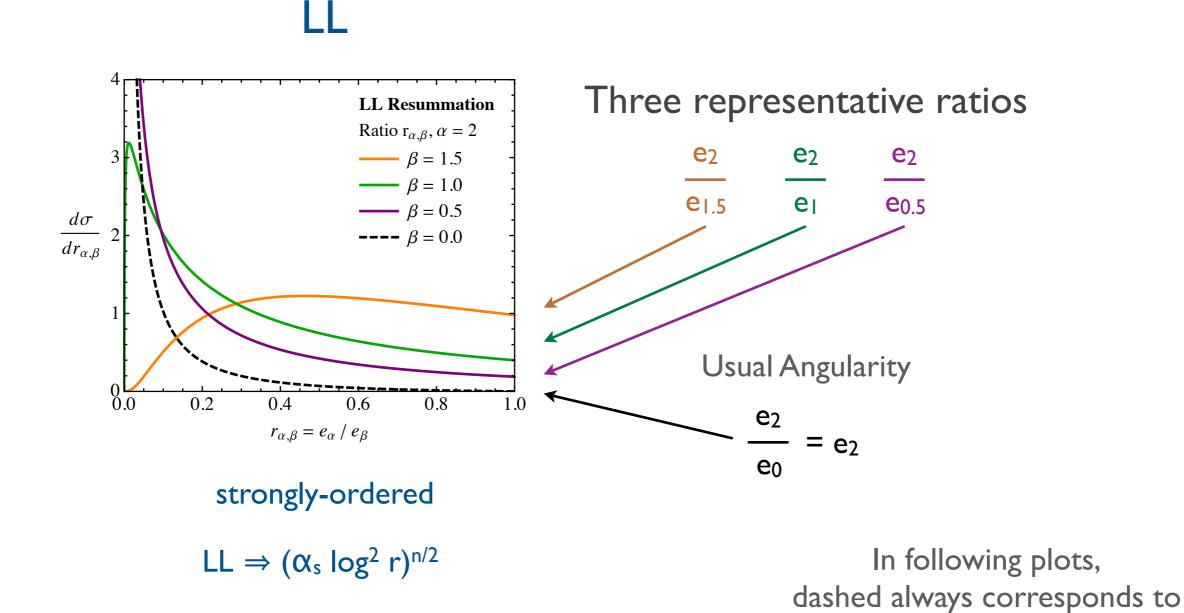
$$\frac{d\sigma^{\rm LL}}{dr} = \sqrt{\alpha_s} \frac{\sqrt{C_F \beta}}{\alpha - \beta} \frac{1}{r} + \mathcal{O}(\alpha_s)$$

Ratio Cross Section:

$$\frac{d\sigma^{\mathrm{LL}}}{dr} = \frac{\sqrt{\alpha_s C_F \beta} 1}{\alpha - \beta r} \left(1 - 2\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r\right) \left(\operatorname{erf}\left[\frac{\sqrt{\alpha_s C_F \beta}}{\sqrt{\pi(\alpha - \beta)}} \log r\right] + 1\right) e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} - 2\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{\log r}{r} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r}}{\frac{1}{\pi} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta}} \frac{1}{r} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{\log^2 r}{r}} + \mathcal{O}(\alpha_s)$$
Expanded in small α_s :
$$\frac{d\sigma^{\mathrm{LL}}}{dr} = \sqrt{\alpha_s} \frac{\sqrt{C_F \beta}}{\alpha - \beta} \frac{1}{r} + \mathcal{O}(\alpha_s)$$
Not a valid
Taylor expansion
Finite cross section
for all r (even r = 0)
Unsafe....but Calculable

Calculational Results

Leading-Log Result is Systematically Improvable

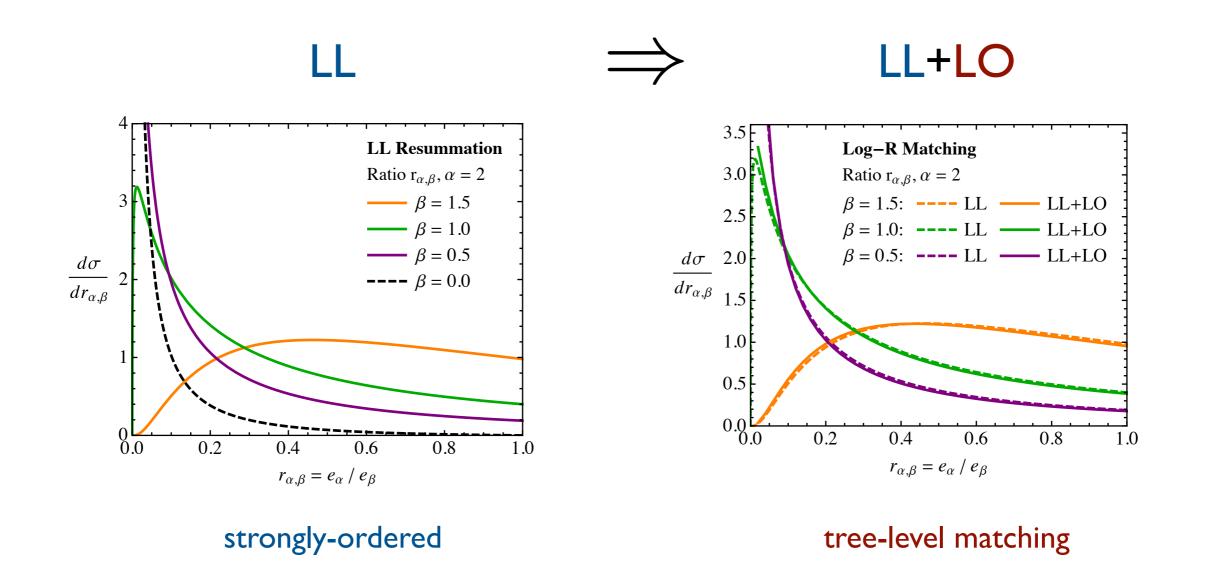


Jesse Thaler — Unsafe but Calculable

previous level of accuracy

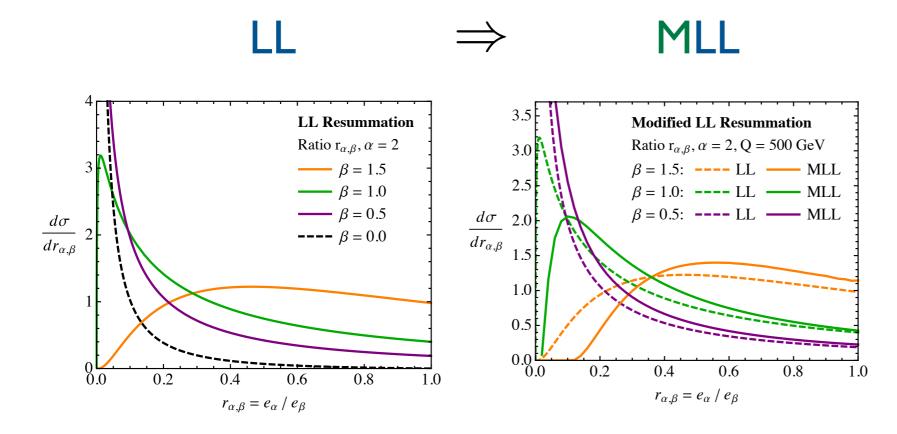
Fixed-Order Matching

Mild impact from exact matrix element



Higher-Order Resummation

Large impact from running coupling: "Modified Leading Log"

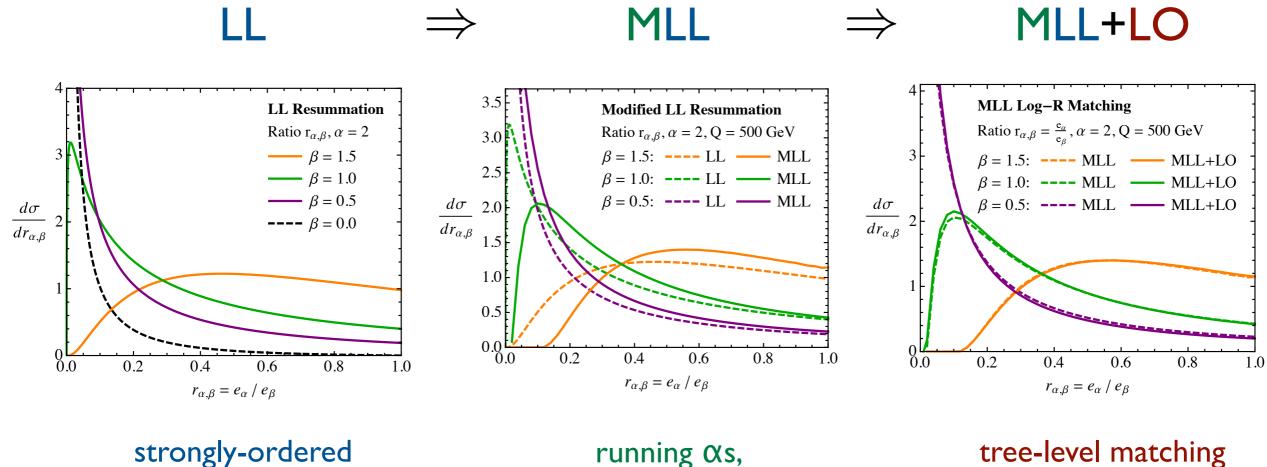


strongly-ordered

running α s, subleading splitting functions

Higher-Order Resummation

Large impact from running coupling: "Modified Leading Log"

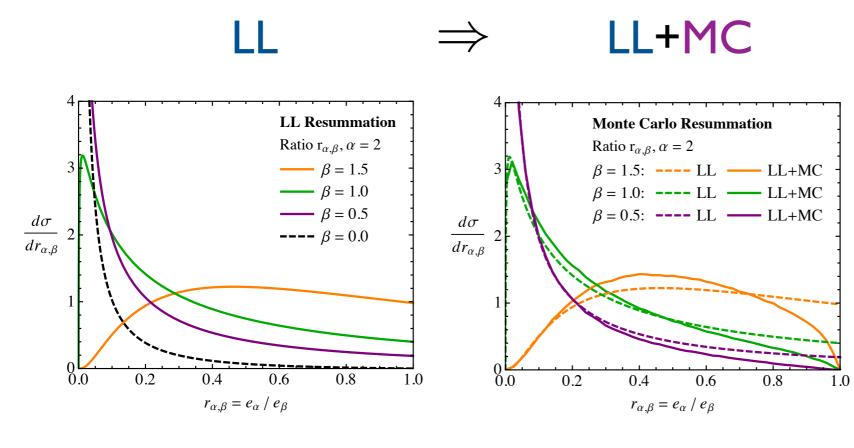


running α s, subleading splitting functions

tree-level matching

Multiple Emissions

Change in tail region from Monte-Carlo-style resummation

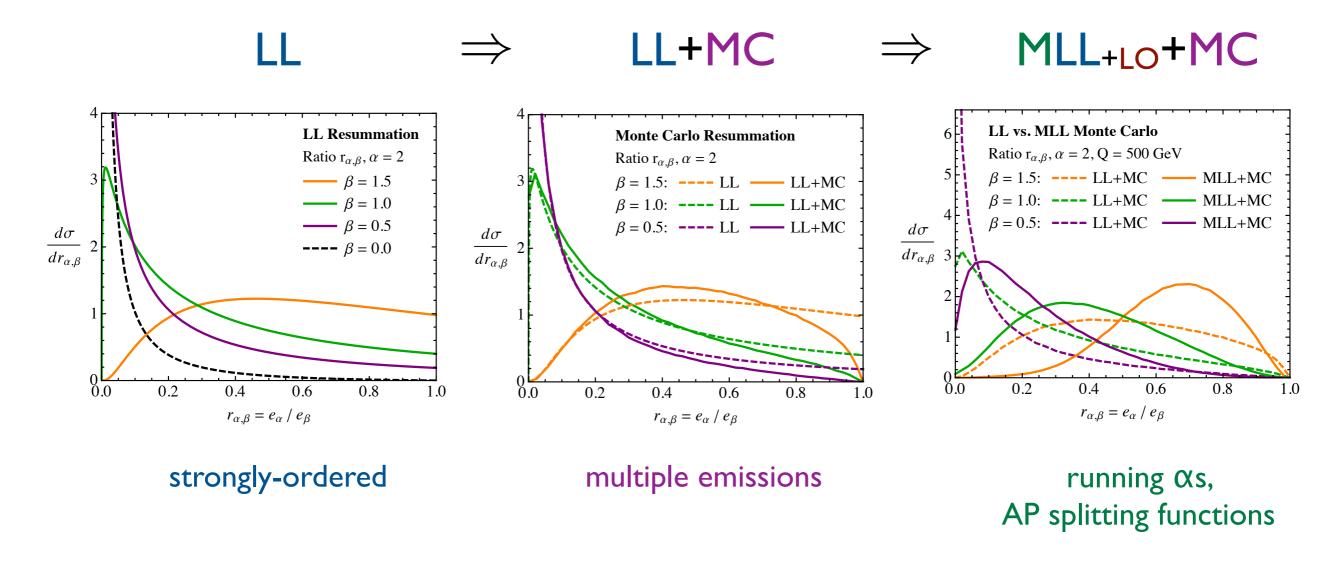


strongly-ordered

multiple emissions

Multiple Emissions

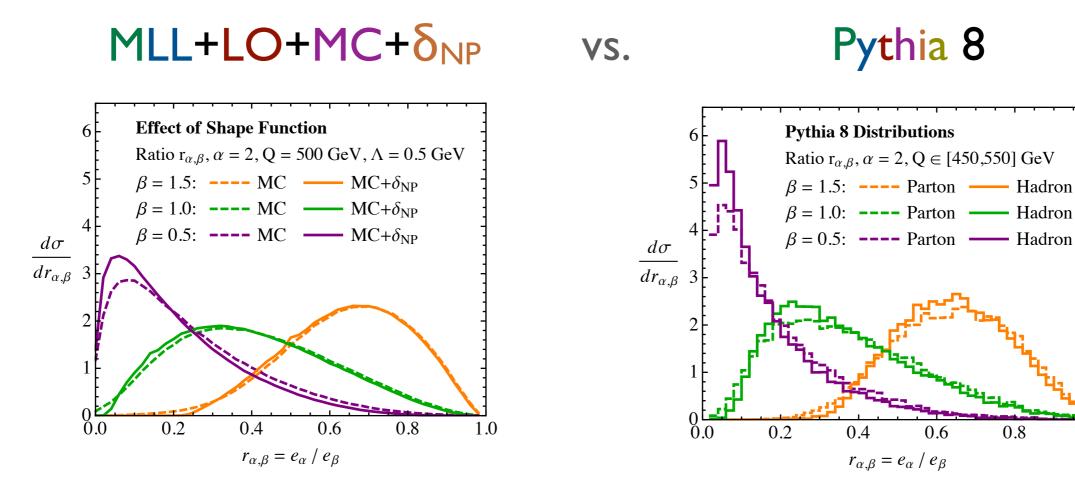
Change in tail region from Monte-Carlo-style resummation



includes tree-level matching

Hadronization Corrections

Power Corrections vs. Hadronization Model



power corrections

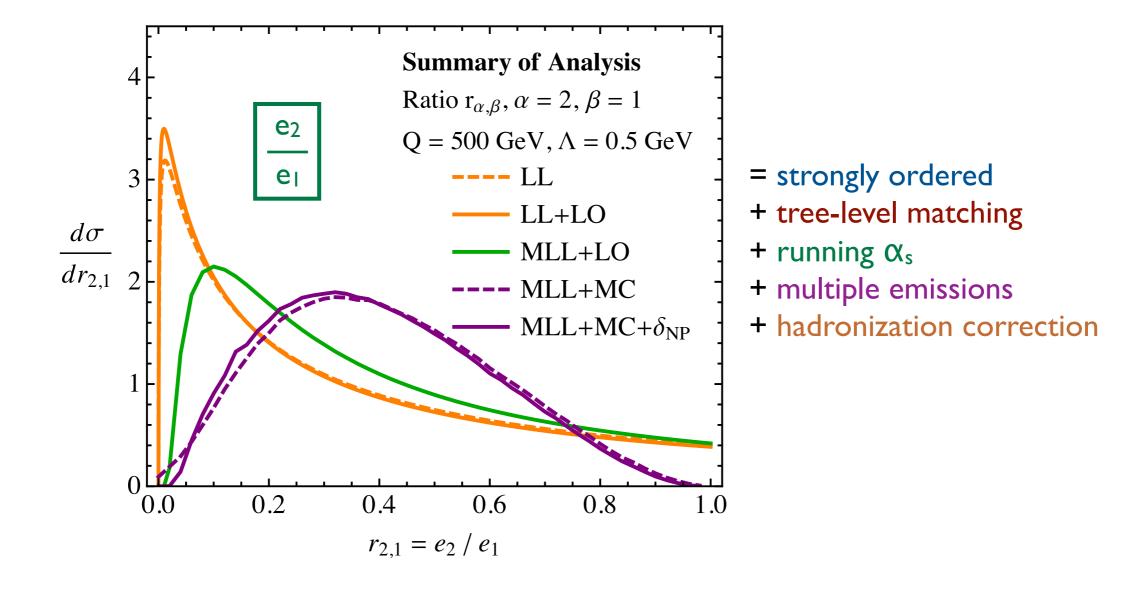
hadronization model

momentum conservation, color coherence, ...

1.0

Building up a Realistic Distribution

All of these (and more) in existing parton shower programs



Expect ratio observables to be reasonably well-described in Monte Carlo

Summary

Ratio Observables: Ubiquitous & Unsafe

Even if A,B are IRC safe, R = A/B has singularities in the denominator B Cannot calculate to any fixed order in α_s

Ratios of Angularities: "Sudakov Safe"

Sudakov factor regulates singularities Ratio distribution well-defined with all orders in α_s Amusing expansion in $\sqrt{\alpha_s}$

Calculational Results

Can systematically improve strongly-ordered limit Many improvements already in parton shower Monte Carlos Ongoing work to calculate 2-prong ratio observables like τ_2/τ_1

Broader Lesson

If an IRC unsafe observable is at all related to an IRC safe one, then probably a way to calculate

Hadronic Cross Sections = PDFs \otimes IRC Safe Track-based Observables = Track Functions \otimes IRC Safe Ratio Observables = IRC Safe / IRC Safe