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Introduction 
•  Many NP models predict enhancement of Higgs pair production at 

high invariant mass: 
–  New physics resonances: 

•  KK Graviton:  ppGKKhh 
–  Extended Higgs sectors: 

•  2HDM:  ppHhh 
•  Singlet Higgs extensions: ppHhh 
•  Composite Higgs models: VVhh 

•  A Higgs with SM-like couplings appears to have been discovered! 
–  hbb decay dominant at mh~125 GeV (BR~57%). 

•  Motivates us to study Xhhbbbb 
–  This is a new region of phase space not yet covered by searches! 
–  But is it feasible? 

•  See our short paper on archive for more details arXiv:1307.0407 
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4b Topology 
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We use resolved jets here, 

no substructure! 
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Signal models: 
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Backgrounds: 
QCD 
ttbar 

We concentrate on Xhh 
in the studies presented 
here, using Gkkhh as a 

benchmark model. 
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Diboson ZZbbbb 

But clearly the topology 
also allows for XZZ…and 

VBS of ZZ. 
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4b Topology 
•  Advantages: 

–  Resonances with large BR to hh benefit from dominant hbb BR. 
•  Take a big (double) hit in BR with any other Higgs decay 

channel. 
–  Resonances with large BR to ZZ benefit from the larger Zbb BR. 

•  BR(ZZbbbb)/BR(ZZllll) ~ 5  (where l = e,µ) 
–  High boost/multijets means efficient triggering possible: 

•  Can use multijet triggers at first level. 
•  Online b-tagging can be used at higher levels. 

–  High boost means negligible ambiguity in correct pairing to 
reconstruct hbb decays. 

 
•  Disadvantages: 

–  The QCD background is huge, right? 
–  Signal efficiency is poor? 
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Test with a particle-level 
study for 20fb-1 at 8 TeV 



Particle-Level Study 



Benchmark Signal Model 

•  Randall-Sundrum Kaluza-Klein graviton (Gkk) in Agashe-Davoudiasl-
Perez-Soni (ADPS) model with k/MPI = 1.0 [1,2] 
–  Gkk production/decay to light fermions/photons highly suppressed. 
–  Significant Gkkhh branching ratio.  

•  Generated using Madgraph + Pythia8.17 with CTEQ6L1, using the 
CP3-Origins Madgraph implementation [3] of the ADPS model. 
–  Only the Gkkhhbbbb decay mode with mh=125 GeV. 
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Width ~60 GeV 
at MG = 1 TeV 

GKKhh BR ~8% 

Taken from [3] with kind permission Taken from [3] with kind permission 



Particle-Level Study 
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Fastjet used to cluster final 
state particles into anti-KT 

R=0.4 jets. 
No detector smearing applied. 

Require at least 4 b-
tagged jets with pT >  
40 GeV and |η| < 2.5  

Require 2 dijets with 
pT

dijet > 200 and 
ΔRdijet < 1.2 

Require mdijet 
consistent with mh 

100 < Mdijet < 130 GeV 

Jets b-tagged and 
with pT > 40 GeV 

Two boosted dijet 
systems pT > 200 
GeV and mdijet~mh 

“Truth” b-tagging 
using simple 

parameterisation 
of ATLAS/CMS 

b-tagging 
performance: 

B-jet 70% 
C-jet 20% 
Light 1% 
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•  Approximately constant signal efficiency ~8% between 800-1100 
GeV.  
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•  Approximately constant signal efficiency ~8% between 800-1100 
GeV.  

Sweet spot for this 
resolved analysis 
where this is little 

efficiency loss 
from the dijet 
requirement 
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•  At higher and lower masses we have some efficiency loss. 
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lower masses due to 
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•  Approximately constant signal efficiency ~8% between 800-1100 
GeV. 

•  At higher and lower masses we have some efficiency loss. 
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•  At higher and lower masses we have some efficiency loss. 

Loss of efficiency at 
higher masses due 

to jet merging. 



QCD Backgrounds 

•  Main component of QCD background is the irreducible ppbbbb. 
–  But also some contribution from mistagged ppbbcc. 

•  QCD Backgrounds generated using Sherpa 1.4.3 
–  Using bbbb and bbcc matrix elements. 
–  No k-factor applied… 
–  …but scale factor variations should cover NLO corrections [4]. 
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tt Background 

•  ttbar background arises from all hadronic channel, where c-jet from 
hadronic W decay fakes a b-jet, and forms dijet with true b-jet. 

•  Generated using Pythia 8.17. 
•  Rate normalised to average ATLAS/CMS √s=8 TeV ttbar 

measurement (235pb) [6,7]. 
•  Uncertainty on ttbar background rate from uncertainty on 

measurements. 17 
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Background for 20fb-1 @ 8 TeV 
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Background for 20fb-1 @ 8 TeV 
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Dramatic ~50 times reduction in QCD and ttbar backgrounds 
when we require the b-tagged jets form two boosted dijets 



Background for 20fb-1 @ 8 TeV 
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Background for 20fb-1 @ 8 TeV 
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•  After mh dijet mass requirement get s/b~1! 
•  This for a signal with cross-section of only 36fb! 
•  Backgrounds are very small! 

•  QCD and ttbar backgrounds of similar size. 



Background for 20fb-1 @ 8 TeV 
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Estimate Sensitivity 
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Cross-section for 3σ Sensitivity 
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3σ sensitivity for signal σ x BR down to 
few fb at 1 TeV with 20fb-1! 

 



Cross-section for 3σ Sensitivity 

26 

Resonance Mass [GeV]
600 800 1000 1200 1400 1600

) [
fb

]
bbbb

→
hh

→X
→

(p
p

σ

1

10

210

-1 evidence in 20fbσ3

 variation
R

µ/
F

µBkgd 

KK graviton prediction

We could be sensitive at 3σ level to 
ADPS KK gravition masses up to ~1 

TeV  
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Sensitivity worse at lower mass 
due to lower signal efficiency and 

higher background. 
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Sensitivity 
does not 

degrade much 
at higher 

masses, even 
with resolved 

analysis. 

Background is 
very low out 

here! 
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Cross-section for 3σ Sensitivity 
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somewhat 

Appears to be potential for great sensitivity to new physics in this 4b final state! 



Different Study, Same Conclusion 

•  An independent study also shows the great potential of the 
Xhhbbbb final state [8]. 

•  Different approach: 
–  Use substructure techniques to “tag” Higgs resonance. 
–  Only one b-tag per Higgs. 
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Outlook 



Optimisation 
•  Purpose of this simple study is to flag Xhhbbbb as a very 

promising final state for new physics searches. 
–  We leave the optimisation for the experiments! 

•  But clearly a lot of options for extracting best possible sensitivity: 
–  Tuning of basic cuts versus mass in the resolved analysis 

•  pT
jet, pT

dijet, ΔRdijet, mH window 
–  Use single jet masses for Higgs reconstruction in merged region 

(GKK mass > 1.1 TeV). 
•  Use trimming, pruning? Double b-tagging of single jets? 

–  Use substructure “Higgs tagging”?  
•  Requirement of 4 b-tags has already decimated the bkgds. 
•  Some mixture of b-tagging and resonance tagging optimal? 

–  Reduction of ttbar background. 
–  Kinematic fit: taking advantage of known mh to improve m4b 

resolution. 
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Summary 
•  There is huge background reduction power in the boosted bb-bb final 

state. 
•  Opens up searches for new physics resonances in Xhh and XZh 

channels. 
–  This is unchartered territory, with many models testable! 

•  But also can extend current searches in XZZ channel: 
–  Potential to be very competitive versus current ZZlljj and ZZjjjj 

searches. 
–  Can be combined with these to improve limit further. 

•  Intriguing possibility of measuring ZZ VBS in bb-bb final state. 
•  In addition ZZllbb or ZZττbb must also be worthy of 

investigation… 
 
•  Also VLQ BBbbbbbb searches! 
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Backups 
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Higgs Mass Window 

•  Jets do not include muons or neutrinos, and not corrected for out-of-
cone.  

•  Asymmetric cut around mh=125 GeV is appropriate. 
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Benchmark Signal Model 

•  Cross-sections and widths for ppGKKhhbbbb at 8 TeV. 

•  Kaluza-Klein n=1 graviton (Gkk) in a Randall-Sund 
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Signal Kinematics 
•  Clear efficiency loss at 

low GKK masses from 
dijet pT requirement. 

•  Optimal dijet pT cut likely 
to be higher for higher 
masses. 
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merging at high GKK 
masses in this resolved 
analysis. 

•  For lowest masses the 
ΔRdijet cut could be 
optimised. 



Signal Jet Kinematics 
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QCD Backgrounds 

•  NLO corrections to LO ppbbbb + 
X at √s=14 TeV recently calculated 
in [4] and [5] 
–  NLO/LO corrections are large 

~50%. 
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•  Define uncertainty on our Sherpa background prediction as variation 
in renormalisation/factorisation scale choice μ0 by factor ½ and 2: 

–  But renormalisation/factorisation scale variations of LO cover the 
variation at NLO. 

•  We successfully reproduced the LO prediction of [4] using Sherpa 
bbbb at √s=14 TeV with the same scale choice μ0. 

•  Hence we have some confidence that our scale variations of Sherpa 
cover NLO corrections.   

Taken from [4] with kind permission 
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ZZlljj Limits on GKK 
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•  95% C.L. upper limits of ~100fb at 1 TeV. 
•  Exclusion up to mGKK ~ 900 GeV for k/MPI = 1.0. 



ZZjjjj Limits on GKK 
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•  Don’t use ADPS model explicitly. 
•  95% C.L. upper limits of ~90fb at 1 TeV. 
•  Uses dijet mass of fat-jets with pruning and MDT. 


