

Pruning and Q-Jets at ATLAS BOOST 2013– Flagstaff, Arizona

Maximilian Swiatlowski, for the ATLAS Collaboration

13 August, 2013

Showing results from ATLAS-CONF-2013-087

M. Swiatlowski

Pruning and Q-Jets at ATLAS

New Work in the Theory Community

- Last year at BOOST: ATLAS implements jet grooming and many "simple" jet substructure techniques
 - Simple, as in, "you can write it down in one or two lines"
 - Simple does not mean ineffective- these techniques were confirmed to be very effective at discriminating boosted objects!
- Over the past year, many developments in "more complicated" techniques in the theory community
 - Looking deeper into the parton shower, potentially using more information in our jets
- Today, showing first ATLAS results on one of these techniques-Q-Jets: {1201.1914}
 - Close collaboration with theorists has been critical for these resultsmany thanks for all the help!

Q-Jets: A New Approach to the Parton Shower

• Naively, people think of jet clustering as the inverse of the parton shower

- But the parton shower is actually not invertible!
- This means that many different showers could have produced the same jet
- Q-Jets asks: since there is no "right" inverse, why not study as many as we can?
 - Do not settle for just one clustering history per jet: many "inverses' are possible!

Q-Jets: A New Approach to the Parton Shower

• Naively, people think of jet clustering as the inverse of the parton shower

- But the parton shower is actually not invertible!
- This means that many different showers could have produced the same jet
- Q-Jets asks: since there is no "right" inverse, why not study as many as we can?
 - Do not settle for just one clustering history per jet: many "inverses" are possible!

Q-Jets: Many Interpretations of the Same Jet

- How do we get multiple jets out of the same jet?
 - Add a **non-deterministic element** to jet clustering: each run will produce a different outcome
- Instead of choosing the minimum distance pair when clustering jets, choose a **random pair**
 - Not completely random: weighted by the normal distance metric and $\alpha_{\rm r}$ called **rigidity**
 - Also run **jet pruning**: reject merges when pairs are wide apart, with disparate p_T
 - Much more likely to happen when choosing random pairs!
 - More details in backup
- Since every clustering will be different, **run clustering many times** and generate a distribution of Q-Jets

How to Select Pairs

• Choose a random pair ij, using the weights:

$$\omega_{ij}^{(lpha)} = \exp\left\{-lpha rac{d_{ij} - d^{min}}{d^{min}}
ight\}$$

• What do these weights mean?

• If
$$d_{ij} = d^{min}$$
 then $\omega_{ij} = 1$

- $\longrightarrow\,$ This is the largest weight: all others will be equal or smaller
- \longrightarrow The "best" pair is the most likely pair in Q-jets, and the "worst" pair is the least likely

• If
$$lpha o \infty$$
 then $\omega_{ij} = 1 \Leftrightarrow d_{ij} = d^{min}$, otherwise, $\omega_{ij} = 0$

- \longrightarrow If α becomes large, only the "best" pair has any weight: normal pruning occurs
- If $\alpha \rightarrow 0$ then $\omega_{ij} = 1 \ \forall \ ij$
 - \longrightarrow If α becomes small, all pairs have equal weight

Quick Aside: Why Pruning?

- With Q-jets, we want **distributions of jets**: each jet should be different!
 - But if you just sum the same 4-vectors, the order doesn't matter: if you want different jets, you need to be modifying them somehow
- Pruning provides a merge-by-merge criteria for rejecting constituents
 - Always checking how far apart, and how unbalanced in p_T , your pairs are
- Q-jets provides "random" pairs for merging: pairs are much more likely to be rejected when they are random!
 - Which constituents get rejected will depend on the exact clustering. history: possible to get very different jets

• Start with three identical initial histories: clusterings will produce different Q-Jets!

• Start with three identical initial histories: clusterings will produce different Q-Jets!

- Q-Jet 1 Q-Jet 2 Q-Jet 3
- Each final clustering has different constituents pruned off, leading to a **different mass**

• Start with three identical initial histories: clusterings will produce different Q-Jets!

Q-Jet 1 Q-Jet 2 Q-Jet 3

• Start with three identical initial histories: clusterings will produce different Q-Jets!

Q-Jet 1 Q-Jet 2 Q-Jet 3

• Start with three identical initial histories: clusterings will produce different Q-Jets!

Q-Jet 1 Q-Jet 2 Q-Jet 3

• Start with three identical initial histories: clusterings will produce different Q-Jets!

- Q-Jet 1 Q-Jet 2 Q-Jet 3
- Each final clustering has different constituents pruned off, leading to a **different mass**

How to Test Q-Jets at ATLAS?

- Want to test the performance in ATLAS data: important to analyze not just in background but also **signal**
 - Have a nice, large sample of **boosted** *W*-jets from semi-leptonic top events: use these as signal!
 - QCD is the standard background we fight against: use **multijet events** for this
- Our studies will compare these two event classes, and pruned anti- $k_t R = 0.7$ jets with cuts:
 - **1** 200 GeV $< p_T < 350$ GeV: high enough p_T for merged W, but not high enough to merge into top-jets
 - **2** 50 GeV < m < 110 GeV: W mass window
- NB: why R = 0.7? Pruning works well here!

Pruned Mass

- Want to see if our sample actually has W-jets
 - See a peak, in data and MC!
- Good data/MC agreement in both W-jets and QCD, but especially good in QCD

Example Jets

• A W-jet has a **small spread** in masses for its Q-jets: a QCD jet has a **very large spread** in masses for its Q-jets

SLAC

Jet Volatility

Volatility: Making an Observable from Q-Jets

• Inspired by the previous plots, define $\nu = \Gamma/\langle m \rangle$, where $\Gamma = RMS$

- Volatility, with $N_{Qjets} = 75$ and $\alpha = 0.1$, for W-jets and QCD-jets
 - Truth-jets on left, reconstructed jets on right
- See very good discrimination between signal and background!

SLAC

Optimization vs α

• Define significance as:

$$S = \frac{\langle QCD \rangle - \langle W \rangle}{\sqrt{\Gamma(QCD)^2 + \Gamma(W)^2}}$$

- Attempting to answer: which α gives best separation?
 - See that $\alpha = 0.1$ performs best: confirmed later in final efficiency/rejection numbers

Resistance to Pileup

• Volatility vs μ for W-jets (on left) and QCD-jets (on right), in MC

• Not a strong dependence: note that left plot has axes zoomed in

SLAC

Volatility Data

Data and MC (Volatility)

Generally very good agreement seen in data/MC!

W-jet events have slightly worse agreement: data has lower values of volatility

Efficiency/Rejection vs α

- Signal efficiency (x-axis) and background rejection (y-axis) for MC (left) and data (right): use plots from previous slide as inputs
- Data and MC agree very well, as expected from previous agreement
- 15 QCD-jet rejection at 50% W-jet efficiency- strong performance
- $\alpha = 0.1$ has the best separation by a small amount

Efficiency/Rejection vs N_{Q-jets}

- Same plot for MC, now comparing N_{Qjets}
 - Much shallower optimization: all perform nearly as well as the others
 - Slight degradataion for N_{Qjets} = 10: N_{Qjets} = 25 is the lowest value where performance has plateaued

Comparing to N-subjettiness

Comparing to N-subjettiness

- How does volatility compare with existing *W*-tagging techniques, i.e. N-subjettiness?
- · See some correlation, but especially in dijets, not very strong
 - Suggests a powerful potential combination of the variables
- More information on N-subjettiness in backup

Efficiency/Rejection with N-subjettiness

- Now, compare the full ROC curve for both variables
- See generally similar performance
 - At high efficiency, volatility is a little stronger
 - At low efficiency, N-subjettiness is a little stronger
- Next step: a combination, exploiting the strengths of each

Conclusions

- Q-jets are a new way to interpret jets: focus on multiple possible clustering histories, motivated by non-invertibility of parton shower
 - The first time such an idea is being considered!
- ATLAS has measured Q-Jets in data and reconstructed MC
 - Can obtain a factor of 15 QCD-rejection for 50% W-jet efficiency in the 200 GeV $< p_T < 350$ GeV regime- very competitive with existing techniques, with a possibility for combinations to further improve performance
 - Compatible with results/expectations from theorists
 - See good data/MC agreement
 - Volatility shows only slight dependence on pileup
- Just the tip of the iceberg: volatility is the first application of Q-jets at ATLAS- looking forward to seeing more!

Thank You For Your Attention!

Backup

Q-jets: The Algorithm

- Algorithm proceeds as follows:
 - Start with a jet found by any jet algorithm and collect the constituents into a list of constituents.
 - 2 Compute a set of weights ω_{ij} for all pairs of four-vectors. Define a probability Ω_{ij} = ω_{ij}/N, where N = ∑ω_{ij}.

$$\omega_{ij}^{(\alpha)} = \exp\left\{-\alpha \frac{d_{ij} - d^{min}}{d^{min}}\right\}$$
(1)

- Generate a random number, using Equation 1 as a probability density function, and choose a pair from above according to the probabilities Ω_{ij}.
- Onsider this pair for merging, and veto (as in normal pruning) if they fail the standard pruning cuts (see backup)
- Continue until all pairs are merged: the result is one Q-jet. The algorithm can be repeated multiple times to generate a distribution of Q-jets for every jet.

Jet Pruning

- Adapted from the theory paper:
 - **1** Start with a jet found by any jet algorithm, and collect the constituents into a list *L*. Define parameters d_{cut} and z_{cut} .
 - 2 Rerun a jet algorithm on the list L, checking for the following condition in each recombination i, j → p:

$$z = \frac{\min(p_{Ti}, p_{Tj})}{p_{Tp}} < z_{cut} \text{ and } \Delta R_{ij} > d_{cut}$$
(2)

- If the conditions in 2) are met, do not merge the two branches 1 and 2 into p. Instead, discard the softer branch, i.e., veto on the merging. Proceed with the jet algorithm.
- **④** The resulting jet is the *pruned jet*, and can be compared with the jet found in step 1.
- In practice, usually select C/A as the algorithm in step 2), and $z_{cut} = 0.1$ and $d_{cut} = m/p_T$

Jet Reconstruction

- Use both R = 0.4 and R = 0.7 jets in the analysis
 - **1** R = 0.4 LC jets are used only for event selection
 - These jets are fully calibrated (with pileup corrections, in-situ corrections)
 - Events with a jet which failes "looser" are rejected
 - **2** R = 0.7 jets are the objects of study
 - No calibration applied: none available for pruned R = 0.7 jets- this should be a small effect at high p_T, central η
 - R = 0.7 required for pruning to function: does not work with smaller/larger jets
 - Studies performed on truth particles, LCTopo clusters, and tracks

- *b*-tagging used for selections
 - Scale factors applied, 70% working point used
- MUID muons used for selections
 - Fully corrected, all scale factors used
 - Standard selections from top group, but use older isolation definition
 - Mini-iso from top group not avaiable in SMWZ D3PD's
- MET prescription from HSG3 used
 - Fairly standard, full jet calibrations applied, etc.

- Goal of the study is to analyze the performance of Q-jets in data and MC, in both signal and background
 - We want to be able to say "If I have a jet, what does Q-jets say about whether it is a W-jet?"
- Two sets of cuts are used to select signal (real W) and background events (fake W) with high purity
 - 1) $t\bar{t}$ selection: supplies boosted W-jets as signal sample
 - 2 Dijet selection: supplies light-quark and gluon jets as background sample

$t\bar{t}$ Selection

- Require standard semi-leptonic $t\bar{t}$ selection from top group:
 - Passes GRL
 - Passes standard quality checks
 - 8 Muon trigger: EF_mu24i_tight OR EF_mu36_tight
 - 4 1 good muon with $p_T > 25$ GeV, no electrons
 - **6** 4 good jets ($p_T > 20$ GeV, JVF > 0.5, $|\eta| < 2.5$), at least 1 b-tagged at 70%
 - **6** MET > 20 GeV, $MET + M_T > 60$ GeV

Plus our cuts:

- 1 Lead R = 0.7 jet has 200 GeV $< p_T^{pruned} < 350$ GeV
 - Enough p_T for boosted W, not enough for boosted top
- **2** Lead R = 0.7 jet has $|\eta| < 1.8$
- 3 Lead R = 0.7 jet has 50 GeV $< m^{pruned} < 110$ GeV
 - Select W-jet candidates
- (4) The b-tagged jet from step 5) above does not overlap with the lead R = 0.7 jet
 - Used to remove combinatoric backgrounds

Dijet Selection

- Dijet selection is as follows (note that we study the subleading R = 0.7 jet):
 - Passes GRL
 - Passes standard quality checks
 - 3 Leading R = 0.4 jet required to pass the EF_j145_a4tchad trigger treshholds ($p_T > 185$ GeV)
 - Unprescaled trigger would not give many jets in our p_T range of interest
 - (2) Leading R = 0.4 jet required to be isolated from the subleading R = 0.7 jet ($\Delta \phi > 2.0$) to remove trigger bias
 - **5** Subleading R = 0.7 jet has 200 GeV $< p_T^{pruned} < 350$ GeV
 - **6** Subleading R = 0.7 jet has $|\eta| < 1.8$
 - 7 Subleading R = 0.7 jet has 50 GeV $< m^{pruned} < 110$ GeV

More Details on N-subjettiness

- Adapted from the original paper:
 - *τ_N* is the normalized sum over *p_T* weighted distances to the closest of
 N subjets:

$$\tau_N = \frac{1}{R\sum_k p_T^k} \sum_k p_T^k \min_J \{\Delta R(k, J)\}$$
(3)

where the k-index counts over jet constituents, J-index counts over subjet axes, R is the jet radius. Subjet axes are determined by minimizing τ_N over possible candidate axes

• τ_{MN} is defined simply as:

$$\tau_{MN} = \frac{\tau_M}{\tau_N} \tag{4}$$

Optimization vs α

- Here, show mean volatility in both dijet and *W*-jets
- See again that $\alpha = 0.1$ has the best separation

Q-Jets More Results

Optimization vs N_{Q-jets}

- Here, show mean volatility in both dijet and W-jets, but as a function of N_{Q-jets}
- Not much difference! Can use as low as 25?

M. Swiatlowski

Pruning and Q-Jets at ATLAS

Q-Jets More Results

Track-Jet Result

- Can also calculate Q-jets with **only charged particles**: track-jets matched to calorimeter jets
- See good discrimination, but much less
- Data/MC agreement is very similar to full calorimeter results

M. Swiatlowski

Pruning and Q-Jets at ATLAS

N-Subjettiness: Discrimination

- Always calculate N-subjettiness with unpruned constituents
 - Following the result that has given best discrimination for trimming as well
- Using minimized N-subjettiness here (first ATLAS result on this)
 - Use one-pass minimized k_T axes for calculation
- Good discriminaton visible between *W*-jets and dijets here

N-Subjettiness: Data/MC Agreement

• for the anti- $k_T R = 0.7$ jets shown here

- NB: using unpruned constituents: similar to what we do with trimming
- Generally good agreement, in signal and background

Systematics for W-jets

- Following sources are included in systematics:
 - tt
 trianslassing
 trianslassing
 - 2 Luminosity
 - R = 0.4 JES/JER
 - **4** R = 0.7 JMS (conservative 7% shift), no JES
 - **5** *b*-tagging uncertainties
- Additionally, *MET* softterm, muon scale factors, and muon trigger systematics were found to be negligible