Jet Radiation Radius and Pileup

arXiv: 1309.xxxx Zhenyu Han University of Oregon

8/15/2013, BOOST2013 @ Flagstaff, AZ

Identifying boosted objects in a contaminated environment

- High multiplicity events (e.x., SUSY cascades)
- W's in top decays (contaminated by b jets)
- Initial state radiation
- Underlying event
- Pileups

Outline

- Review of W jet tagging
- Difficulties with pileup
 - Jet radiation radius
 - Application in W jet tagging
- Outlook and conclusion

W jet tagging

• Differences between w jets and quark/gluon jets

- W mass peak vs QCD continuum
- 2 balanced hard subjets vs hierarchical momenta
- Color singlet vs triplet/octet: different radiation patterns
 - W: radiation concentrated in a small cone
 - QCD: radiation diffused.

The three differences are (almost) uncorrelated. Use all of them!

W jets vs QCD jets

Group the energy in 0.1x0.1 bins on (eta, phi) plane, jets found using R=1.2, C/A

QCD jet from W+j->lvj, W-jet from WW->lvjj, Madgraph+Pythia 8

Jet grooming algorithms

- Eliminate soft radiations, identify the hard subjets
- Mass peak well reconstructed
- Radiation information lost

Jet shape/radiation variables

- Variables sensitive to radiation.
 - N-subjettiness
 - Charged particle multiplicity
 - R-cores: measure how mass/pt change according to the jet radius
- Combine with jet grooming methods

Jet shape variables (without pileups)

PT=500GeV.After an overall cut on jet mass after filtering/mass drop. Nch and τ₂₁ calculated before filtering. mfilt calculated from calorimeter cells (0.1x0.1 binning), τ₂₁ from tracks alone.

Correlations

correlation coefficients

W

	m_{filt}	$N_{\rm ch}$	τ_2/τ_1
$m_{ m filt}$	1	-0.08	-0.12
$N_{\rm ch}$	-0.08	1	0.51
τ_2/τ_1	-0.12	0.51	1

QCD

	m_{filt}	$N_{\rm ch}$	τ_2/τ_1
m_{filt}	1	0.07	-0.14
$N_{\rm ch}$	0.07	1	0.50
τ_2/τ_1	-0.14	0.50	1

A few comments on N-subjettiness

- $\tau_2/\tau_1(\tau_{21})$ relevant to W tagging. Two ways to get a large τ_1 :
 - 2 (or more) hard subjets (correlated to jet grooming)
 - Significant amount of diffused radiation (small correlation to the hard splitting scale)
 - Similar to (fat) jet mass
- "Best way" to use N-subjettiness:
 - use jet grooming to 'factorize out' the hard splitting,
 - After grooming, T₂₁ becomes a variable measuring the amount of radiation.

Combined performance (without pileup)

- Combine variables sensitive to the hard splitting (mass after filtering/mass drop) and those sensitive to the color structure.
- Combining filtering and τ₂/τ₁(Nch) improves the significance (S/sqrt(B)) by a factor of 1.5(1.4), over filtering alone; Combining all three gives a factor of 1.6 (Han, 2011).
- 'Ultimate' performance with MVA:

Cui, Han and Schwartz, 2010

Difficulties from pileup

2.5

2

1E

1.5

0.5

0

0.2

0.3

0.4 0.5 0.6 0.7 0.8

ທູ່

90 100 110 120 130 140 150

No Pileup, R=1.2, >300GeV jets Pythia 8:WW, QCD dijet particle level Best improvement in S/sqrt(B) filtering: 2.7 filtering+T₂₁: 4.8

60 Pileup events (Pythia 8 SoftQCD), R=1.2 >300GeV jets Best improvement in S/sqrt(B) filtering: 1.47 filtering+T₂₁: 1.54

Thursday, August 15, 13

0.015

0.005

0.01

0

70

80

Pileup Subtraction (Soyes, Salam, Kim, Dutta, Cacciari, 2012)

ρ & ρ_m subtracted Best improvement in S/sqrt(B): filtering(subtr):1.61 filtering(subtr)+T₂₁(subtr):1.8

Do we need R=1.2 to calculate $T_{21?}$

Thursday, August 15, 13

Dijets, PT=40GeV (W)

Dijets, PT=400GeV

Related works

Dasgupta, Magnea, Salam, 2007

Soyez, 2010

- Best radius for discrimination? ullet
- Radiation variables: T₂₁, Nch...? ullet
- Effect from pileup? •
- Boosted case? lacksquare

Jet radiation radius

- What's the 'intrinsic size' of a jet?
- In a color singlet system in its center of mass frame, R(x) is defined as the minimum jet radius that averagely x percent of the total 'amount of radiation' is contained in the leading 2 (n) jets.
 - The definition of 'amount of radiation' depends on the variable used.
 - Alternative definition: the minimum jet radius that x percent of the events have x percent of the radiation contained in the leading jets (similar to the h-index definition).

$\operatorname{Boosted} W$

• Shrinking cone size R ~ I/PT :

 $p_1 \cdot p_2 = p_{10} \cdot p_{20}$ $E_1 E_2 - E_1 E_2 \cos \theta = E_{10} E_{20} - E_{10} E_{20} \cos \theta_0$ boost: $E_1 / E_{10} \approx E_2 / E_{20}$ $\Rightarrow \theta / \theta_0 \approx E_{10} / E_1$

When jets merged, jet radius becomes subjet radius

40 GeV vs 200 GeV quarks from W decay

Boosted W vs QCD jet

ee->ww, qqg

Discrimination procedure

- Cluster to fat, high pt jets
- Calculate subtracted groomed jet mass
- Apply a precut on the groomed jet mass optional
- Find the axes of the two leading subjets, calculate T₂₁ for jet constituents with a cone around the two axes, (shrinking) cone size determined by

$$R_{\rm sub} = R_{\rm ref} \frac{100 {\rm GeV}}{p_{T,\rm sub}}$$

• 2D analysis using (m_{filt,subtr}, T_{21,sc}).

Performance at the LHC

Pythia 8, 60 pileups WW & dijet Rfat=1.2, PT>300GeV Rref=0.3 (at 100GeV)

Performance

Performance

Best significance 1.77, filtering(subtr) alone: 1.30 filtering(subtr)+T21(subtr):1.40

 Suggestion to experimentalists: increase jet radius for the fat jet (to cluster more W's), but reduce the radius for calculating radiation variables.

Future directions

- More sophisticated R_{sub} choices? Other variables?
 Combine with charged hadron subtraction?
- Other applications
 - Higgs search
 - Top tagging (even useful when using tracks alone)
 - Quark-gluon discrimination
 - Processes with many final state partons
- Theoretical calculations, Monte Carlo validations

Conclusion

- Radiation of a hard parton is concentrated, which can be quantified by jet radiation radius.
- The jet radiation radius is smaller for larger boost
- By selecting a small cone size dependent on the (sub)jet momentum to calculate radiation variables, we can reduce the impact from pileups and improve the tagging efficiencies for boosted objects.