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  Computer vision: high-dimensional data   usable information 
 Gender recognition, optical character recognition 
  Similar to a myriad of  HEP problems—object identification 

 Here, focus on calorimeter jet flavor classification 

 Use linear methods on all available information to  
  Perform feature extraction/dimensional reduction 
 Use transparency of  these methods to inspect them physically 
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MOTIVATION 
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SAMPLES STUDIED 

Event 
Generator 

Project into 
calorimeter 

C/A R=1.2 

Image 
Processing 

Split sample 

Train MLA’s 

Test MLA’s 

  Event Generation: pp @ √s = 8 TeV 
 W vs Light: Pythia W(μν)W(qq) vs W(μν)j 
  Cross Checks Performed: 

  Pile up 
  Fast detector simulation (Loch) 
  Compare generators 

  Calorimeter: 0.1x0.1 ΔηxΔϕ ,  |η| < 2.5 

   C/A R=1.2 Jet Finding: 
  Save highest pT jet / event, |ηj| < 2.5 
 Trimmed (5% kt0.3)  
 Only keep towers that survived trimming 
  Study jets in 6 bins of  subjet-ΔR 
  Jet Mass > 55 GeV  
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IMAGE PROCESSING 
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Example W jet 

Average of W jets 
Not much info! 
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IMAGE PROCESSING 

Event 
Generator 

  Center and rotate jet-images before training MVA 
  Introduces small smearing, but huge gain in discrimination! 
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Average of 
unrotated W jet 

Not much info! 

Average of 
rotated W jet 

Much better! 
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CLASS AVERAGES 
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How can we extract the important features? 
How can we convert this into discrimination power? 



  Finds direction that… 

 Maximizes between-
class scatter / within-
class scatter 

  Extracts the single 
“most important” 
feature 
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FISHER’S LINEAR DISCRIMINANT 
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  Finds direction that… 

 Maximizes between-
class scatter / within-
class scatter 

  Extracts the single 
“most important” 
feature 
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FISHER’S LINEAR DISCRIMINANT 

Hard 2nd 
subjet in 
W-jets 

Radiation around 1st  
subjet in light jets 

QCD-like 

W-like No info in 
presences of 
1st subjet 

Wide 2nd 
subjet in 
light jets 

0.6 < Subjet ΔR < 0.8 
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EXTRACTING A VALUE 

QCD-like 

W-like 

0.6 < Subjet ΔR < 0.8 
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EXTRACTING A VALUE 

 D = ΣpT
i λi 
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0.6 < Subjet ΔR < 0.8 
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EXTRACTING A VALUE 

 D = ΣpT
i λi 

Dot product of 
two jets-images! 

QCD-like 

W-like 
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0.6 < Subjet ΔR < 0.8 
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  Hadronic W vs l ight 

  250<pT/GeV<300 

  55<Mass/GeV<105 
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BINNED FISHER 

W-like Subjet ΔR-Binned Fisher-Jets    QCD-like 

Subjet ΔR causes much 
image variation without 
too much discrimination 



 Use the Fisher’s 
single feature as 
a discriminant? 

  Comparable 
results to  

  β=1 τ2/τ1 
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PERFORMANCE 

0 10 20 30 40 50 60 70 80 90 100

Signal Efficiency [%]

1

3

6

10

30

60

100

B
a
ck

g
ro

u
n

d
R

ej
ec

ti
on

6 DR Binned Fisher

NSubjet2Over1

50% W eff. 
vs  
x6 QCD rej. 



 Train new discriminant for each 50 GeV jet pT window 

 More complex binning/image processing could be useful, but 
performance is robust against jet pT 
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DIFFERENT PT BINS 

Minimum Jet pT 200 250 300 350 400 450 

NSubjettiness 29% 32% 34% 34% 39% 40% 

6 DR Bin Fish 34% 40% 41% 44% 46% 44% 

W Efficiency @ x10 QCD Rejection 
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 Train on no PU samples 
 Test on samples of  W and light jets with μ=30 
 Our performance gets “better” 

 Only because we add jets to the bkg sample that are very easy to remove 
 Happens for N-subjettiness too 
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PRELIMINARY CROSS CHECKS 

Tested on 
No PU 

Tested on 
PU = 30 
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  As a first pass, lets try applying Peter Loch’s “smearing” 
  Produces a cell-to-cell smearing by simulating particle in material 
 No significant effect on performance 
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CROSS CHECK: SMEARING 
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no smearing 

Tested on 
smeared jets 



−0.2 0.0 0.2 0.4 0.6 0.8

Fisher-Jet

0

50

100

150

200

250

300

O
cc

u
p

a
n

cy

W Jets

Light Jets

−0.2 0.0 0.2 0.4 0.6 0.8

Fisher-Jet

0

100

200

300

400

500

O
cc

u
p

a
n

cy

W Jets

Light Jets

  Check Pythia vs Herwig: want to see no sensitivity to differences 
 Use the same discriminant (trained on Pythia jets) 
  Similar performance when tested on Pythia or Herwig jets 
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CROSS CHECKS: GENERATORS 
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Tested on 
Pythia Jets 

Tested on 
Herwig Jets 

W eff @ QCD Rejection 
71% @ x2 
18% @ x10 
10% @ x20 

W eff @ QCD Rejection 
70% @ x2 
20% @ x10 
11% @ x20 
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GENERALIZE 

Use exact same technology 
for many different systems! 

Lets take a peek… 
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HIGGS TO B-QUARKS 
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QUARK VS GLUON 
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Identical performance to width 
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QUARK VS GLUON 
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Width and Fisher have the same 
performance, but aren’t completely 
correlated 



 Many other systems to study 
 Top vs light, hadronic higgs, q/g 
 Hadronic taus, electrons in jets, photon vs π0 
 Whole calorimeter event-images for high multiplicity signatures 
  Pile up quantification is the perfect linear problem 

 Not sure preprocessing is optimized 
 Normalization, center fixing, scaling, boosting, whitening… 
  Starting from other physical bases (eg. cell pT pairs vs cell pTs) 

 Today’s methods only took us the year 2000 in the CS literature 
  Facial recognition is very active and new methods abound pouring out! 
 More powerful linear methods, non-linear dimensional reduction, etc… 
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FUTURE OPPORTUNITIES 
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  Conceptual mapping between jets and images  allowed us to 
exploit well-studied CS techniques to jet flavor tagging 

 Using easy-to-examine Fisher ’s linear discriminant, produced W 
vs light separation at or above N-subjettiness 
 No need to define ‘good’ variables a priori  flexible method! 

 Discriminant shows little sensitivity to changing: pile up, 
detector smearing, event generator 
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CONCLUSION 
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BACK UP 



  Simplification in the case of  only 2 classes… 
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MATH OF FISHER 
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FISHER 2D 
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0.6 < Subjet ΔR < 0.8 
55 < Mass< 105 
250 < jet pt < 300 



  Is there linear discrimination between Pythia / Herwig? 
 Nope!  But this is how they differ linearly 
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COMPARING GENERATORS 
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 There are some small but 
measurable differences  

  Further study needed but 
I’d hypothesize its about 
the pT balance 
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