APPLYING COMPUTER VISION TO JET FLAVOR IDENTIFICATION

JOSH COGAN MICHAEL KAGAN EMANUEL STRAUSS ARIEL SCHWARTZMAN

BOOST 2013 AUGUST 15, 2013

MOTIVATION

- Computer vision: high-dimensional data \rightarrow usable information
 - Gender recognition, optical character recognition
 - Similar to a myriad of HEP problems—object identification

Here, focus on calorimeter jet flavor classification

- Use linear methods on *all available* information to
 - Perform feature extraction/dimensional reduction
 - Use transparency of these methods to inspect them physically

SAMPLES STUDIED

- Event Generation: pp @ $\sqrt{s} = 8$ TeV
 - W vs Light: Pythia $W(\mu\nu)W(qq)$ vs $W(\mu\nu)j$
 - Cross Checks Performed:
 - Pile up
 - Fast detector simulation (Loch)
 - Compare generators
- Calorimeter: 0.1x0.1 $\Delta \eta x \Delta \phi$, $|\eta| < 2.5$
- C/A R=1.2 Jet Finding:
 - Save highest pT jet / event, $|\eta_j| < 2.5$
 - Trimmed (5% kt0.3)
 - Only keep towers that survived trimming
 - Study jets in 6 bins of subjet- ΔR
 - Jet Mass > 55 GeV

Josh Cogan

IMAGE PROCESSING

IMAGE PROCESSING

- Center and rotate jet-images before training MVA
- Introduces small smearing, but huge gain in discrimination!

CLASS AVERAGES

BOOST - August 15, 2013

FISHER'S LINEAR DISCRIMINANT

- Finds direction that...
- Maximizes betweenclass scatter / withinclass scatter

 Extracts the single "most important" feature

FISHER'S LINEAR DISCRIMINANT

EXTRACTING A VALUE

EXTRACTING A VALUE

EXTRACTING A VALUE

BINNED FISHER

PERFORMANCE

DIFFERENT PT BINS

Train new discriminant for each 50 GeV jet pT window

 More complex binning/image processing could be useful, but performance is robust against jet pT

W Efficiency @ x10 QCD Rejection

Minimum Jet pT	200	250	300	350	400	450
NSubjettiness	29%	32%	34%	34%	39%	40%
6 DR Bin Fish	34%	40%	41%	44%	46%	44%

PRELIMINARY CROSS CHECKS

- Train on no PU samples
- Test on samples of W and light jets with $\mu = 30$
- Our performance gets "better"
 - Only because we <u>add jets</u> to the bkg sample that are very <u>easy to remove</u>
 - Happens for N-subjettiness too

CROSS CHECK: SMEARING

As a first pass, lets try applying Peter Loch's "smearing"

- Produces a cell-to-cell smearing by simulating particle in material
- No significant effect on performance

CROSS CHECKS: GENERATORS

- Check Pythia vs Herwig: want to see no sensitivity to differences
- Use the same discriminant (trained on Pythia jets)
- Similar performance when tested on Pythia or Herwig jets

Use <u>exact same technology</u> for many different systems!

Lets take a peek...

Josh Cogan

HIGGS TO B-QUARKS

QUARK VS GLUON

QUARK VS GLUON

FUTURE OPPORTUNITIES

Many other systems to study

- Top vs light, hadronic higgs, q/g
- Hadronic taus, electrons in jets, photon vs π^0
- Whole calorimeter event-images for high multiplicity signatures
- Pile up quantification is the perfect linear problem
- Not sure preprocessing is optimized
 - Normalization, center fixing, scaling, boosting, whitening...
 - <u>Starting from other physical bases</u> (eg. cell pT pairs vs cell pTs)
- Today's methods only took us the year 2000 in the CS literature
 - Facial recognition is very active and new methods abound pouring out!
 - More powerful linear methods, non-linear dimensional reduction, etc...

CONCLUSION

Conceptual mapping between jets and images allowed us to exploit well-studied CS techniques to jet flavor tagging

- Using easy-to-examine Fisher's linear discriminant, produced W vs light separation at or above N-subjettiness
 - No need to define 'good' variables *a priori* → flexible method!
- Discriminant shows little sensitivity to changing: pile up, detector smearing, event generator

MATH OF FISHER

Simplification in the case of only 2 classes...

$$\left[\vec{\mu}_{W}\right]_{k} = \frac{1}{N_{jets}} \sum_{W \ jets} p_{k}^{T}$$

$$[C_W]_{i,k} = \frac{1}{N_{jets}} \sum_{W jets} (p_k^T - \mu_k) (p_i^T - \mu_i)$$

Average W jet

Covariance of cell p^Ts in W jets

$$\vec{F} = \left(C_W + C_L\right)^{-1} \left(\vec{\mu}_W - \vec{\mu}_L\right)$$

Josh Cogan

FISHER 2D

0.6 < Subjet ΔR < 0.8 55 < Mass< 105 250 < jet pt < 300

COMPARING GENERATORS

Is there linear discrimination between Pythia / Herwig? Nope! But this is how they differ linearly

Light Jets

Pythia8

Herwig

0.08

0.00

-0.08

-0.16

-0.24

2.5 Cell

Coefficient

Train on Pythia VS Herwig

- There are some small but measurable differences
- Further study needed but I'd hypothesize its about the pT balance

Pythia-like -0.32-0.40Herwig-like

Josh Cogan

BOOST - August 15, 2013

1.5

Q.

2.0

1.0

-0.5 Fisher-Jet

Fisher