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  Computer vision: high-dimensional data   usable information 
 Gender recognition, optical character recognition 
  Similar to a myriad of  HEP problems—object identification 

 Here, focus on calorimeter jet flavor classification 

 Use linear methods on all available information to  
  Perform feature extraction/dimensional reduction 
 Use transparency of  these methods to inspect them physically 
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MOTIVATION 
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SAMPLES STUDIED 

Event 
Generator 

Project into 
calorimeter 

C/A R=1.2 

Image 
Processing 

Split sample 

Train MLA’s 

Test MLA’s 

  Event Generation: pp @ √s = 8 TeV 
 W vs Light: Pythia W(μν)W(qq) vs W(μν)j 
  Cross Checks Performed: 

  Pile up 
  Fast detector simulation (Loch) 
  Compare generators 

  Calorimeter: 0.1x0.1 ΔηxΔϕ ,  |η| < 2.5 

   C/A R=1.2 Jet Finding: 
  Save highest pT jet / event, |ηj| < 2.5 
 Trimmed (5% kt0.3)  
 Only keep towers that survived trimming 
  Study jets in 6 bins of  subjet-ΔR 
  Jet Mass > 55 GeV  
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IMAGE PROCESSING 
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Example W jet 

Average of W jets 
Not much info! 
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IMAGE PROCESSING 

Event 
Generator 

  Center and rotate jet-images before training MVA 
  Introduces small smearing, but huge gain in discrimination! 
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Average of 
unrotated W jet 

Not much info! 

Average of 
rotated W jet 

Much better! 
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CLASS AVERAGES 
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How can we extract the important features? 
How can we convert this into discrimination power? 



  Finds direction that… 

 Maximizes between-
class scatter / within-
class scatter 

  Extracts the single 
“most important” 
feature 
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FISHER’S LINEAR DISCRIMINANT 
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  Finds direction that… 

 Maximizes between-
class scatter / within-
class scatter 

  Extracts the single 
“most important” 
feature 
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FISHER’S LINEAR DISCRIMINANT 

Hard 2nd 
subjet in 
W-jets 

Radiation around 1st  
subjet in light jets 

QCD-like 

W-like No info in 
presences of 
1st subjet 

Wide 2nd 
subjet in 
light jets 

0.6 < Subjet ΔR < 0.8 
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EXTRACTING A VALUE 

QCD-like 

W-like 

0.6 < Subjet ΔR < 0.8 



0.0 0.5 1.0 1.5 2.0 2.5

Q2

0.0

0.5

1.0

1.5

2.0

2.5

Q
1

Fisher

Cell

Coefficient

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Josh Cogan BOOST - August 15, 2013 10 

EXTRACTING A VALUE 

 D = ΣpT
i λi 
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0.6 < Subjet ΔR < 0.8 
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EXTRACTING A VALUE 

 D = ΣpT
i λi 

Dot product of 
two jets-images! 

QCD-like 

W-like 
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0.6 < Subjet ΔR < 0.8 
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  Hadronic W vs l ight 

  250<pT/GeV<300 

  55<Mass/GeV<105 
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BINNED FISHER 

W-like Subjet ΔR-Binned Fisher-Jets    QCD-like 

Subjet ΔR causes much 
image variation without 
too much discrimination 



 Use the Fisher’s 
single feature as 
a discriminant? 

  Comparable 
results to  

  β=1 τ2/τ1 
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PERFORMANCE 
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 Train new discriminant for each 50 GeV jet pT window 

 More complex binning/image processing could be useful, but 
performance is robust against jet pT 
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DIFFERENT PT BINS 

Minimum Jet pT 200 250 300 350 400 450 

NSubjettiness 29% 32% 34% 34% 39% 40% 

6 DR Bin Fish 34% 40% 41% 44% 46% 44% 

W Efficiency @ x10 QCD Rejection 
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 Train on no PU samples 
 Test on samples of  W and light jets with μ=30 
 Our performance gets “better” 

 Only because we add jets to the bkg sample that are very easy to remove 
 Happens for N-subjettiness too 
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PRELIMINARY CROSS CHECKS 

Tested on 
No PU 

Tested on 
PU = 30 

15 
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  As a first pass, lets try applying Peter Loch’s “smearing” 
  Produces a cell-to-cell smearing by simulating particle in material 
 No significant effect on performance 
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CROSS CHECK: SMEARING 
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Tested on  
no smearing 

Tested on 
smeared jets 
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  Check Pythia vs Herwig: want to see no sensitivity to differences 
 Use the same discriminant (trained on Pythia jets) 
  Similar performance when tested on Pythia or Herwig jets 
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CROSS CHECKS: GENERATORS 

17 

Tested on 
Pythia Jets 

Tested on 
Herwig Jets 

W eff @ QCD Rejection 
71% @ x2 
18% @ x10 
10% @ x20 

W eff @ QCD Rejection 
70% @ x2 
20% @ x10 
11% @ x20 



Josh Cogan BOOST - August 15, 2013 18 

GENERALIZE 

Use exact same technology 
for many different systems! 

Lets take a peek… 
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HIGGS TO B-QUARKS 
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QUARK VS GLUON 
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QUARK VS GLUON 
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Width and Fisher have the same 
performance, but aren’t completely 
correlated 



 Many other systems to study 
 Top vs light, hadronic higgs, q/g 
 Hadronic taus, electrons in jets, photon vs π0 
 Whole calorimeter event-images for high multiplicity signatures 
  Pile up quantification is the perfect linear problem 

 Not sure preprocessing is optimized 
 Normalization, center fixing, scaling, boosting, whitening… 
  Starting from other physical bases (eg. cell pT pairs vs cell pTs) 

 Today’s methods only took us the year 2000 in the CS literature 
  Facial recognition is very active and new methods abound pouring out! 
 More powerful linear methods, non-linear dimensional reduction, etc… 
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FUTURE OPPORTUNITIES 
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  Conceptual mapping between jets and images  allowed us to 
exploit well-studied CS techniques to jet flavor tagging 

 Using easy-to-examine Fisher ’s linear discriminant, produced W 
vs light separation at or above N-subjettiness 
 No need to define ‘good’ variables a priori  flexible method! 

 Discriminant shows little sensitivity to changing: pile up, 
detector smearing, event generator 
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CONCLUSION 
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BACK UP 



  Simplification in the case of  only 2 classes… 
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MATH OF FISHER 
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FISHER 2D 

60 70 80 90 100

MassDisc

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

F
is

h
er

W Jets (corr = -0.15)

60 70 80 90 100

MassDisc

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Light Jets (corr = -0.34)

−10 0 10 20 30 40 50 60 70 80 90 100

Signal Efficiency (%)

100

101

102

103

104

B
a
ck

g
ro

u
n

d
R

ej
ec

ti
on

Sig Eff @ Bkg Rej
87% @ x2
48% @ x10
32% @ x20
10% @ x100

Sig Eff @ Bkg Rej
95% @ x1.3
90% @ x1.8
75% @ x3.6
50% @ x9.5

250, R=1.2, Trimmed Jets: Pythia8, No PU, No smearing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

NSubjet2Over1

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

F
is

h
e
r

W Jets (corr = 0.60)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

NSubjet2Over1

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Light Jets (corr = 0.63)

−10 0 10 20 30 40 50 60 70 80 90 100

Signal Efficiency (%)

100

101

102

103

104

B
a
ck

g
ro

u
n

d
R

e
je

ct
io

n Sig Eff @ Bkg Rej
83% @ x2
34% @ x10
20% @ x20
4% @ x100

Sig Eff @ Bkg Rej
95% @ x1.3
90% @ x1.5
75% @ x2.6
50% @ x5.7

250, R=1.2, Trimmed Jets: Pythia8, No PU, No smearing

0.6 < Subjet ΔR < 0.8 
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  Is there linear discrimination between Pythia / Herwig? 
 Nope!  But this is how they differ linearly 
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COMPARING GENERATORS 
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 There are some small but 
measurable differences  

  Further study needed but 
I’d hypothesize its about 
the pT balance 
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