

STUDIES WITH BOOSTED TOP QUARKS IN ATLAS

Search for tt resonances

Loïc VALERY LPC – Clermont-Ferrand Ivalery@cern.ch On behalf of the ATLAS Collaboration

BOOST 2013 @ Flagstaff, Arizona

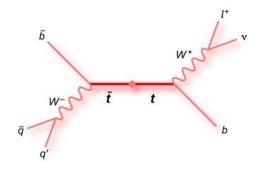
Outline

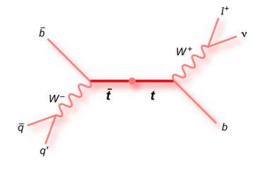
Boosted top quarks

- Why boosted tops ?
- Topologies

Search for tt resonances

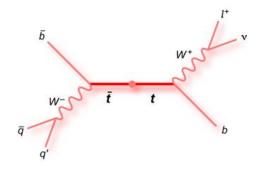
- Benchmarks scenarios
- In the fully hadronic channel
 - Selections and taggers
 - Results
- In the lepton + jets channel
 - Boosted selection
 - Resolved selection
 - Results
- Summary




BOOSTED TOP QUARKS

BOOST2013 - Boosted tops in searches

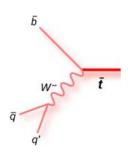
Why boosted top quark?

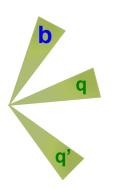


Why studying top quark ?

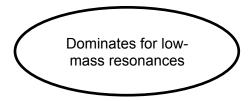
- Highest-mass particle in the SM.
 - ✓ **Expected large coupling** to New Physics particles (Z', g_{KK} , W' ...)
 - ✓ This talk: Focus on **tī resonances**

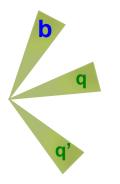
Why studying top quark ?


- Highest-mass particle in the SM.
 - ✓ **Expected large coupling** to New Physics particles (Z', g_{KK} , W' ...)
 - ✓ This talk: Focus on **tī resonances**

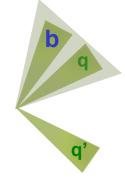

Why boosted top quark ?

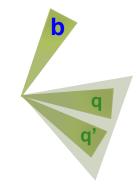
- New heavy particles searches: m_{Zⁱ} >> m_{top}
 - ✓ Top has very large p_T
- Decay products are more collimated: $\Delta R \sim 2m_{top}/p_{T,top}$
 - ✓ Totally different topology


Boosted hadronic tops


Non-boosted top

3 decay products reconstructed as **3 separated jets** (typically anti- k_t (R=0.4) jets)

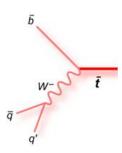

Boosted hadronic tops



Non-boosted top

3 decay products reconstructed as **3 separated jets** (typically anti- k_t (R=0.4) jets)

Dominates for lowmass resonances

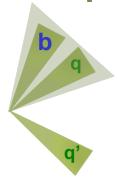

Semi-boosted top

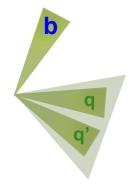
2 decay products close

→ 2 jets merged

→ Only 2 reconstructed jets

Intermediate / highmass resonance


Boosted hadronic tops



Non-boosted top

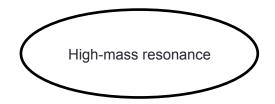
3 decay products reconstructed as **3 separated jets** (typically anti-k_t (R=0.4) jets)

> Dominates for lowmass resonances

Semi-boosted top

2 decay products close

➔ 2 jets merged

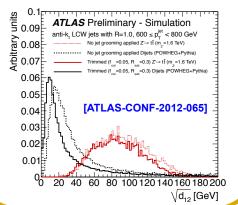

→ Only 2 reconstructed jets

Intermediate / highmass resonance

Boosted top

All decay products merged → One « large R » reconstructed jet (typically anti-k_t (R=1) jet)

Hadronic boosted tops: How ?

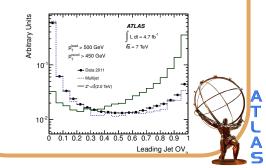

- Multiple algorithms can be used to tag boosted tops [ATLAS-CONF-084]
- Use of substructure variables (splitting scales, N-subjetiness, masses ...)
- This talk: focuses mainly on three algorithms:
 - Splitting scale + mass criterion → single-lepton tt resonances [ATLAS-CONF-2013-052] [PRD88,012004 (2013)]
 - HEPTopTagger & Top Template Tagger → fully-hadronic decaying tt resonances [JHEP01(2013)116]
- Choice between taggers based on the expected signal efficiency, background rejection.

Splitting scale

• Defined as:

 $\sqrt{d_{ij}} = \min(p_{Ti}, p_{Tj}) \times \Delta R_{ij}$

 Example: require for « large R » jet to have √d₁₂ ≥ 40 GeV


HEPTopTagger

[Plehn et al. 1006.2833], [ATLAS-CONF-084]

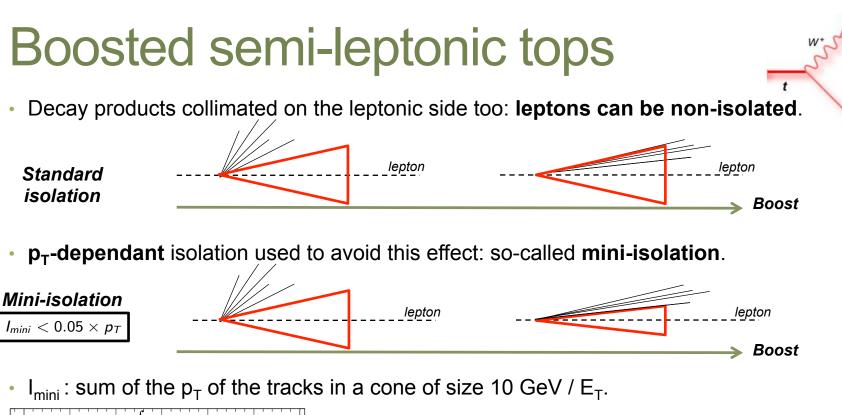
- Divides CA jets into subjets.
- Filtering: remove underlying event / pile-up contributions.
- Combinations of remaining subjets to form the top quark (conditions on masses, masses ratios ...).

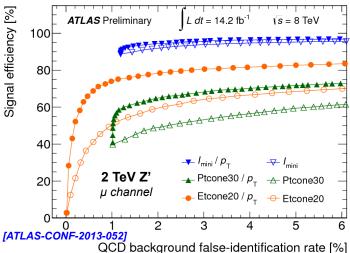
Top Template Tagger

- Compares the energy flow in data and the ones obtained from MC.
- For each comparison, a variable is computed (OV₃)
- Top candidate mass (m) must verify: |m-m_{top}| < 50 GeV

Boosted semi-leptonic tops

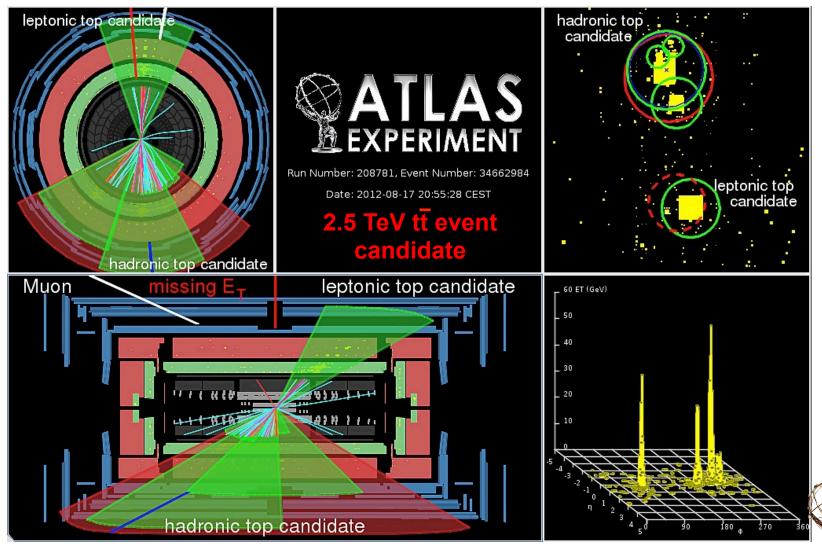
Decay products collimated on the leptonic side too: leptons can be non-isolated.


b


W+_

Boosted semi-leptonic tops Decay products collimated on the leptonic side too: leptons can be non-isolated. Standard isolation P_T-dependant isolation used to avoid this effect: so-called mini-isolation. <u>Mini-isolation</u> <u>Lepton</u> <u>Lepton</u>

• I_{mini} : sum of the p_T of the tracks in a cone of size 10 GeV / E_T .

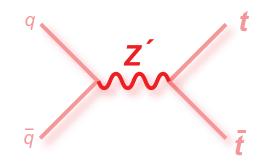


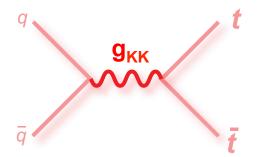
- Mini-isolation more efficient than fixed-cone isolation for a 2 TeV Z'.
- Chosen working point (0.05):
 - False identification rate ~2.2 %
 - Efficiency ~95%
 - Very stable efficiency for different boosting regimes (whole p_T(top) range)

How does a boosted tt event look like ?

[ATLAS-CONF-2013-052]

TTBAR RESONANCES SEARCHES


Benchmarks scenarios



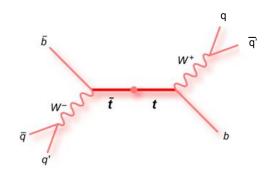
Benchmark scenarios

Z' boson

- Predicted in some leptophobic topcolor models
- Narrow resonance: Γ/m = 1.2 %
- LO cross-section and generation using PYTHIA
- K-factor of 1.3 to account for NLO effects.

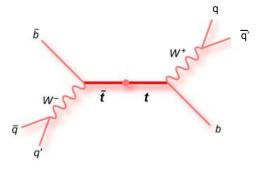
g_{KK} boson

- Predicted in some Randall-Sundrum models
- Broad resonance: Γ/m = 15.3 %
- LO cross-section and generation using MADGRAPH
- No K-factor applied


TTBAR RESONANCES SEARCHES

Fully hadronic decaying tī pairs with 4.7 fb⁻¹ @ 7 TeV Based on JHEP01(2013)116

Analysis strategy

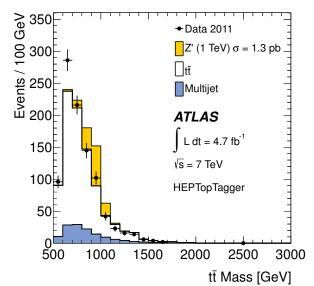

- Considers only highly-boosted top quarks.
- Final state contains only two « large R » jets containing all the decay products of the tops.
- Uses **two top taggers** sensitive to different p_T regimes (*both are tested*)

Analysis strategy

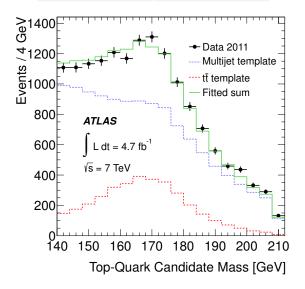
- Considers only highly-boosted top quarks.
- Final state contains only two « large R » jets containing all the decay products of the tops.
- Uses two top taggers sensitive to different p_⊤ regimes (*both are tested*)
- Event selection
 - Trigger
 - Quality criteria
 - One Primary Vertex (PV) with at least 5 tracks
 - The 2 leading jets pass the tagger requirement:
 - HEPTopTagger
 - At least two C/A (R=1.5) jets with $p_T > 200$ GeV and $|\eta| < 2.5$
 - Top Template Tagger
 - At least two anti- k_t (R=1.0) jets with $p_T > 500$ GeV and $|\eta| < 2.0$ (leading) and $p_T > 450$ GeV (recoil)
 - b-tag requirement
 - Small-radius jets (anti- k_t (R=0.4)) with $p_T > 25$ GeV and $|\eta| < 2.5$ are used.
 - At least one *b*-tagged jet within $\Delta R = 1.4$ ($\Delta R = 1.0$) from a fat jet
 - Lepton veto

HEPTopTagger-based analysis

Signal selection efficiency


- More efficient for middly-boosted top quarks
- Not efficient @ low Z' mass (not boosted regime yet)

Background estimation


- Done in several control regions, then extrapolated to signal region
- tt normalisation based on data-driven estimate
- Multijet shape predicted by the behaviour in the control regions

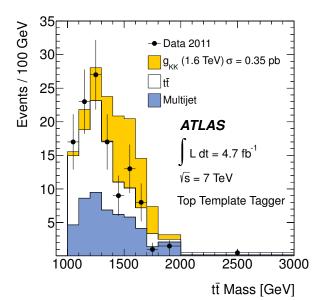
tt mass reconstruction

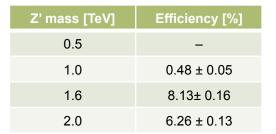
Z' (or g_{KK}) 4-vector = sum of the two top candidates' 4-vectors

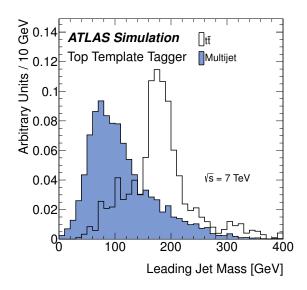
Z' mass [TeV]	Efficiency [%]
0.5	0.03 ± 0.01
1.0	4.76 ± 0.09
1.6	5.40 ± 0.10
2.0	4.44 ± 0.10

Top Template Tagger-based analysis

Signal selection efficiency


- More efficient for highly-boosted top quarks
- Not efficient @ low Z' mass (not boosted regime yet)


Background estimation


- tt estimation from MC
- Multijet estimation data-driven using several control regions

tt̄ mass reconstruction

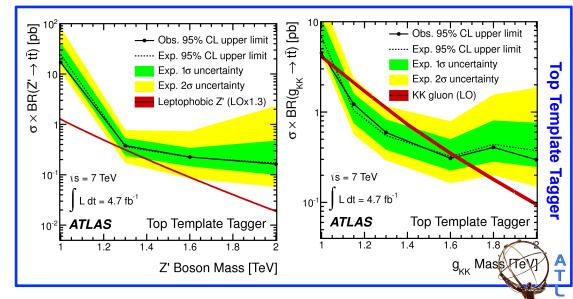
Similar to the HEPTopTagger analysis method

Results and systematic uncertainties

• Yields after both selections (statistical + systematic uncertainties)

	HEPTopTagger	Template Top Tagger
tī	770 ⁺²²⁰ -180	59 ⁺²⁷ ₋₂₆
Multijet	130 ± 70	53 ± 6
Total background	900 ^{+ 230} _{- 235}	112 ± 27
Data	953	123

- No significant excess found in the data compared to background prediction.
- Main systematic uncertainties:
 - b-tagging efficiency, inefficiency
 - Jet Energy Scale
 - tt normalisation



Obs. 95% CL upper limit

Setting limits

- No excess found: 95 % CL limits are set. •
- Using a Bayesian approach •
- Limits set for each of the analyses • independently.
- Combination: the analysis leading to the • best expected limit is chosen.
- $\times \text{BR}(Z \! \to t\bar{t}) \text{ [pb]}$ [dd] 10^{2} Obs. 95% CL upper limit ŧ Exp. 95% CL upper limit Exp. 95% CL upper limit Exp. 1 o uncertainty Exp. 1σ uncertainty Exp. 2 σ uncertainty Exp. 2 o uncertainty 10 10눝 Leptophobic Z' (LOx1.3) 📕 KK gluon (LO) ATLAS ATLAS ь × HEPTopTagger HEPTopTagger ь ᄩ $\sqrt{s} = 7 \text{ TeV}$ $10^{-1} = \sqrt{s} = 7 \text{ TeV}$ 10^{-1} L dt = 4.7 fb⁻¹ $L dt = 4.7 \text{ fb}^{-1}$ 0.8 1.2 1.4 1.6 1.8 0.6 0.8 1.2 1.4 1.6 18 g_{кк} Mass [TeV] Z' Boson Mass [TeV]

10

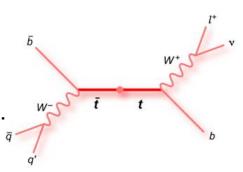
Final observed limits: .

Sample	Mass limits [TeV] 95 % CL limits
Z'	0.70 – 1.00 1.28 – 1.32
g _{кк}	0.70 – 1.62

HEPTopTagger

A S

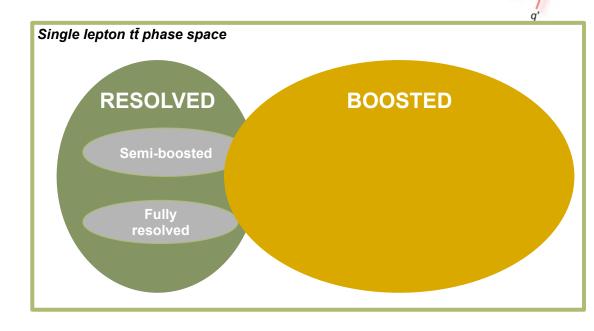
TTBAR RESONANCES SEARCHES


Single lepton channel with 14.3 fb⁻¹ @ 8 TeV Based on ATLAS-CONF-2013-052

NB: 7 TeV analysis : PRD 88, 012004 (2013)

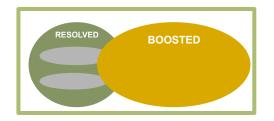
Analysis strategy

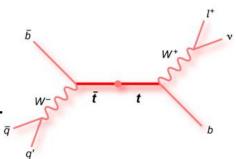
- Analysis designed to cover the whole tt mass range:
 - Resolved analysis: non-boosted topologies
 - **Boosted** analysis: fully-boosted topologies
- Consider electron and muon channels.
- Both analyses are orthogonal: combined for limit setting.



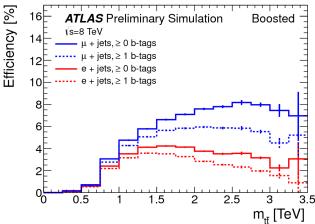
12

Analysis strategy


- Analysis designed to cover the whole tt mass range:
 - Resolved analysis: non-boosted topologies
 - **Boosted** analysis: fully-boosted topologies
- Consider electron and muon channels.
- Both analyses are orthogonal: combined for limit setting.

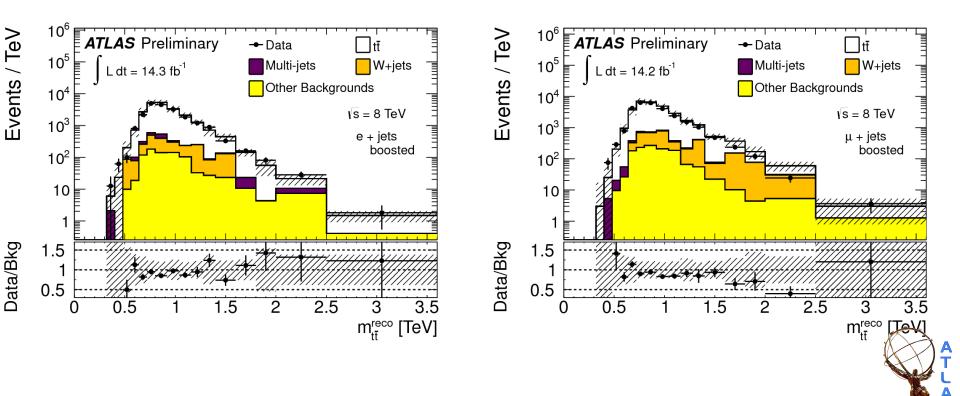


- Analysis designed to cover the whole tt mass range:
 - Resolved analysis: non-boosted topologies
 - Boosted analysis: fully-boosted topologies
- Consider electron and muon channels.
- Both analyses are orthogonal: combined for limit setting.
- The common event selection requires to:
 - **Trigger** (lepton-based)
 - Quality criteria
 - One Primary Vertex (PV) from which originate at least 5 tracks
 - Exactly one electron with $p_T > 25$ GeV and $|\eta| < 2.47$ or one muon with $p_T > 25$ GeV and $|\eta| < 2.5$
 - Missing transverse energy (E^{miss}) and transverse W mass M_T(W)
 - $E_T^{miss} > 30 \text{ GeV}$ and $M_T(W) > 30 \text{ GeV}$
 - E_T^{miss} > 20 GeV and $M_T(W)$ +MET > 60 GeV

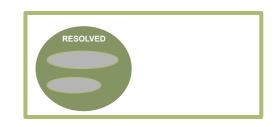


Event selection and reconstruction Boosted topology

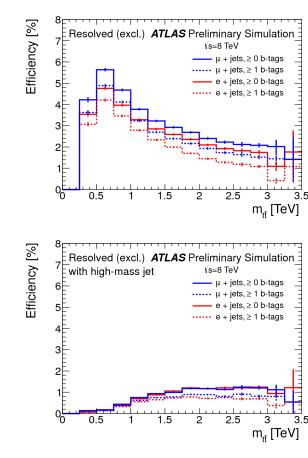
- The boosted selection requires:
 - At least 1 small radius jet, with $p_T > 25$ GeV, $|\eta| < 2.5$ close ($\Delta R < 1.5$) to the lepton
 - At least 1 anti- k_t (R=1) jet, with $p_T > 300$ GeV, $|\eta| < 2$ and $m_{jet} > 100$ GeV.
 - Top tagging : $\sqrt{d_{12}} \ge 40$ GeV
 - At least one small radius jet anywhere in the event is *b*-tagged
- Main remaining backgrounds: SM tt, W+jets
 - Estimated mainly from MC
 - Multijets background estimated from data
 - W+jets is semi data-driven with several scale factors derived from data



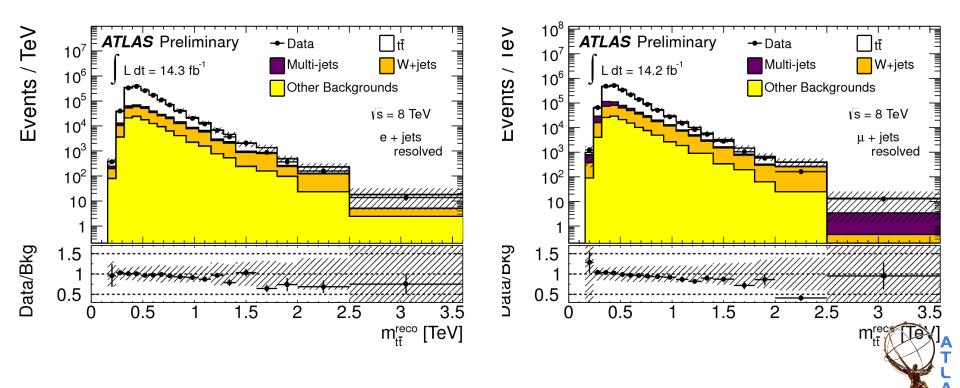
Event selection and reconstruction Boosted topology



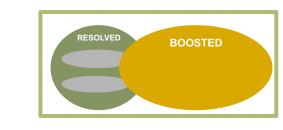
Reconstruction


- · Hadronic top: 4-vector of the « large-R » jet.
- **Semi-leptonic top:** highest- p_T « small-R » jet (close to the lepton) combined to the lepton and the neutrino 4-momenta (the latter derived from E_t^{miss} and lepton kinematics with a constraint on the *W* mass).

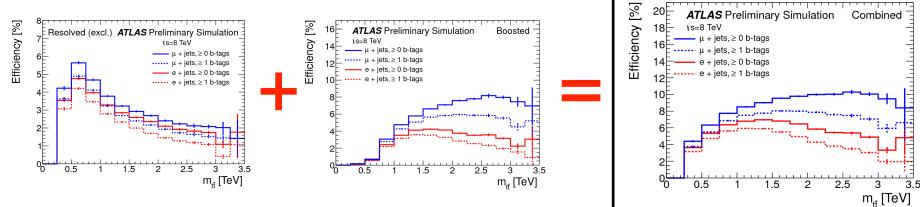
Event selection and reconstruction Resolved topology


- The resolved selection requires:
 - If one small radius jet with m_{iet} > 60 GeV, at least 3 jets are required (semi-boosted case).
 - · Otherwise, at least 4 small radius jets
 - At least one jet is *b*-tagged.
 - Required not to pass the boosted selection

Event selection and reconstruction Resolved topology


Reconstruction

- Performed using a χ^2 algorithm.
- Two functions: one for each case (with / without high mass jet)
- · Based on comparison with MC expectations.



•

Combining analyses

Selection efficiency

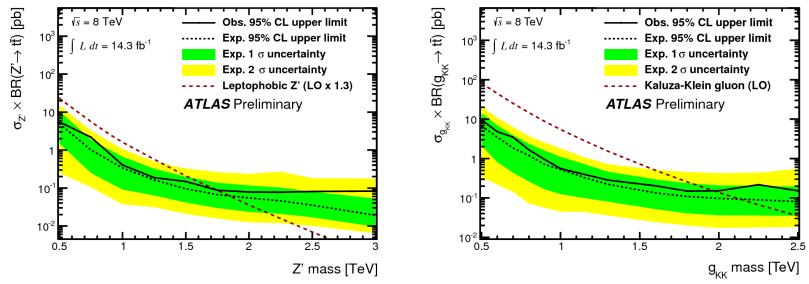
- **High mass** tt pairs mainly selected by the **boosted** analysis and the **semi-boosted** one.
- Low mass regime (until ~800 GeV) dominated by the resolved analysis.
- Events / TeV 10⁸ ATLAS Preliminary - Data --- 5 × Z' (1.5 TeV) tt mass spectrum 107 $-5 \times g_{\kappa\kappa}$ (2.0 TeV) Πtī $L dt = 14.2 \text{ fb}^{-1}$ 10⁶ Multi-jets W+jets Other Backgrounds 10⁵ $\sqrt{s} = 8 \text{ TeV}$ 10⁴ 10³ 10² 10 Data/Bkg 1.5 0.5 0.5 2.5 0 1.5 2 3 3.5 m_{tf}^{reco} [TeV]

Results and systematic uncertainties

• Yields after events selection (uncertainties include normalisation/cross section uncertainties):

	Resolved	Boosted
SM t ī	211,000 ± 33,000	4,900 ± 1,100
Total Background	283,000 ± 39,000	5,600 ± 1,200
Data	280,251	5,122

• Main systematic uncertainties (on the background yields):


	Resolved	Boosted
JES (small radius jets)	6 %	0.7 %
JES+JMS (large radius jets)	0.3 %	17 %
tt normalisation	8 %	9 %
PDF	2.9 %	6 %
tt EW virtual correction	2.2 %	4 %
b-tagging efficiency	4 %	3.4 %

Limits setting

Search for local excess

- Comparing MC-predicted and data-observed spectra, taking into account the systematic uncertainties
- No excess found
- Setting limits using a bayesian technique
 - Limits established at a CL of 95 %

Limits set up to 1.8 TeV on Z' mass, and up to 2.0 TeV on g_{κκ} mass.

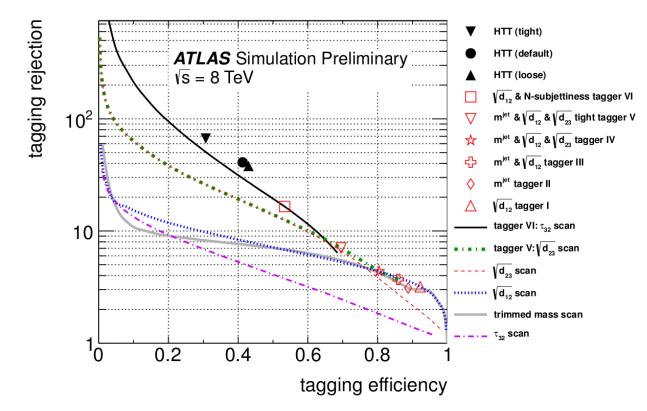
- **Boosted tops are becoming a common tool** to study physics at the TeV-scale, and improve significantly the sensitivity of ATLAS to New Physics particles.
- Especially, **boosted tops** are used in the context of **tt** resonance searches.
- No significant excess has been observed.

	Observed mass limit [TeV]		
	Fully hadronic 4.7 fb ⁻¹ @ 7 TeV	Semi-leptonic 14.3 fb ⁻¹ @ 8 TeV	Semi-leptonic 4.7 fb ⁻¹ @ 7 TeV
Z'	0.70 – 1.00 1.28 – 1.32	0.5 – 1.8	0.5 – 1.74
g _{кк}	0.70 – 1.62	0.5 – 2.0	0.5 – 2.07

Many updates are ongoing using the full 2012 dataset for these studies and many others.


- **Boosted tops are becoming a common tool** to study physics at the TeV-scale, and improve significantly the sensitivity of ATLAS to New Physics particles.
- Especially, **boosted tops** are used in the context of **tt** resonance searches.
- No significant excess has been observed.

	Observed mass limit [TeV]		
	Fully hadronic 4.7 fb ⁻¹ @ 7 TeV	Semi-leptonic 14.3 fb ⁻¹ @ 8 TeV	Semi-leptonic 4.7 fb ⁻¹ @ 7 TeV
Z'	0.70 – 1.00 1.28 – 1.32	0.5 – 1.8	0.5 – 1.74
g _{кк}	0.70 – 1.62	0.5 – 2.0	0.5 – 2.07


- Many updates are ongoing using the full 2012 dataset for these studies and many others.
- Thanks !

BACKUP SLIDES

- ~4π sr detector
- Several sub-detectors: each of them sensitive to different types of particles.

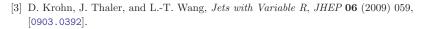
Taggers and choices [ATLAS-CONF-2013-084]

- Different taggers lead to different tagging efficiency / inefficiency
- Choice of the analysis done depending on their needs (large purity, large efficiency).

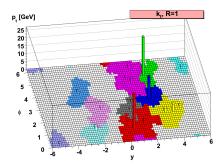
b-tagging

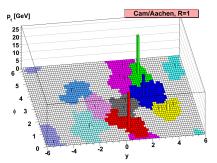
- ATLAS: use of multivariate output to discriminate b jets from light ones.
- Inputs for the multivariate:
 - Impact parameter of the jet
 - Flight distance
 - Displaced vertices
 - ...
- Standard cut applied:
 - 0.6017 @ 2011 data → Eff 70 %
 - 0.7892 @ 2012 data → Eff 70 %

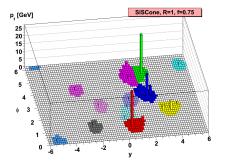
Jets algorithms

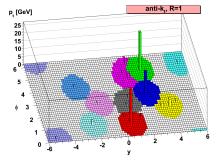

anti-
$$k_T$$
 [16]: $d_{ij} = \frac{1}{\max\left[p_{Ti}^2, p_{Tj}^2\right]} \frac{R_{ij}^2}{R_0^2}, \qquad d_{iB} = \frac{1}{p_{Ti}^2},$

C/A [24, 25]:
$$d_{ij} = \frac{R_{ij}^2}{R_0^2}, \quad d_{iB} = 1,$$

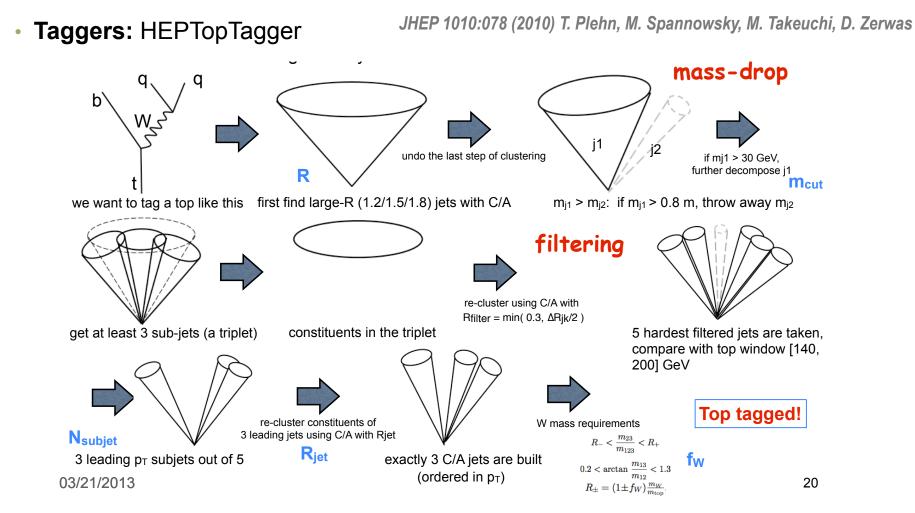

$$k_T [26, 27]: \quad d_{ij} = \min \left[p_{Ti}^2, p_{Tj}^2 \right] \frac{R_{ij}^2}{R_0^2}, \quad d_{iB} = p_{Ti}^2$$

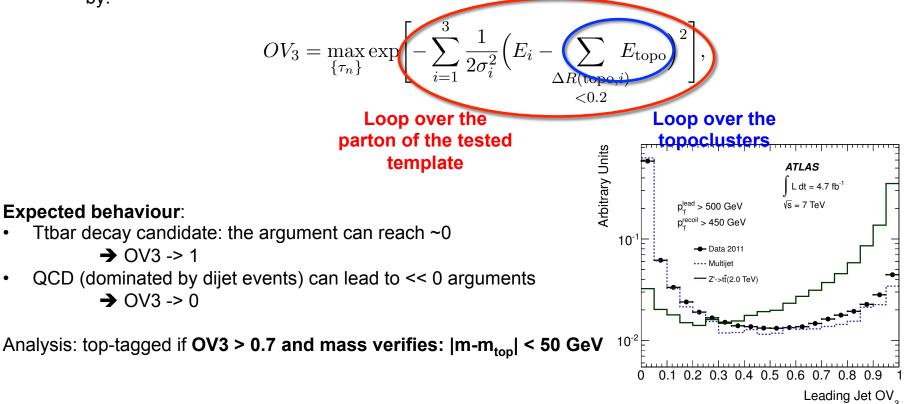

VR [3]:
$$d_{ij} = \frac{1}{\max\left[p_{Ti}^2, p_{Tj}^2\right]} R_{ij}^2, \quad d_{iB} = \frac{\rho^2}{p_{Ti}^4}$$


[Krohn et al., arxiv:0912.1342]



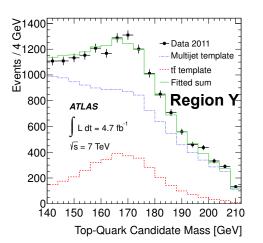
- [16] M. Cacciari, G. P. Salam, and G. Soyez, *The anti-k_t jet clustering algorithm*, *JHEP* **04** (2008) 063, [0802.1189].
- [24] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, *Better Jet Clustering Algorithms*, JHEP 08 (1997) 001, [hep-ph/9707323].
- [25] M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep- inelastic scattering, hep-ph/9907280.
- [26] S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R. Webber, Longitudinally invariant K(t) clustering algorithms for hadron hadron collisions, Nucl. Phys. B406 (1993) 187–224.
- [27] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D48 (1993) 3160-3166, [hep-ph/9305266].




[Cacciari, Salam, arxiv:0802.1189]

From: Xiaoxiao Wang (Yale)

Taggers: TopTemplateTagger

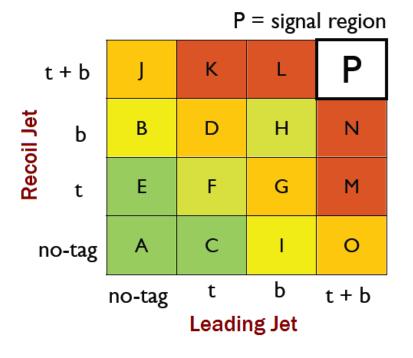

- 300 000 MC templates built do describe the energy flow for a given top $\ensuremath{p_{\text{T}}}$
- The overlap between the observed energy flow | D >, and the one tested template | T > is given by:

Estimation des fonds

- HEPTopTagger
 - Using several control regions: based on number of top-tagged and btagged jets

	1 top-tag	≥ 2 top-tags
no <i>b</i> -tag	$\mathrm{U}(0.3\%)$	V(2.4%)
1 b-tag	W(3.2%)	X(24.3%)
$\geq 2 b$ -tags	Y(22.5%)	Z(80.9%)

Signal region


- Ttbar estimation
 - Use of region Y
 - MC template to describe ttbar
 - Multijet extracted from region W after ttbar substraction
 - Templates are scaled to fit the data in this region
 - SF: 1.01 +- 0.09
 - Propagated to all control regions
- Multijet estimation
 - Data driven, after substraction of the ttbar expected contamination.

$$\frac{\mathrm{d}n_Z}{\mathrm{d}m_{t\bar{t}}} = \left(\frac{1}{n_U} \times \frac{\mathrm{d}n_V}{\mathrm{d}m_{t\bar{t}}} + \frac{1}{n_W} \times \frac{\mathrm{d}n_X}{\mathrm{d}m_{t\bar{t}}}\right) \times \frac{n_Y}{2},$$

With *n* the expected number of multijet events in a given region

Background estimation

- TopTemplate Tagger
 - Using several control regions: based on number of top-tagged and btagged jets

- Ttbar estimation
 - Using MC prediction
- Multijet background estimation

$$K' = N_J \times \frac{N_F}{N_E}$$
$$M' = N_F \times \frac{N_O}{N_C}$$
$$P' = K' \times \frac{M'}{N_F} = \frac{N_J \times N_O \times N_F}{N_E \times N_C}$$

Single lepton ttbar resonances

[ATLAS-CONF-2013-052] [PRD88,012004 (2013)]

Background estimation

- Mostly MC-based (single-top, Z+jets, ttbar)
- Two remaining backgrounds are estimeted / normalised according to data:
 - W+jets background
 - MC prediction used for the shapes for the different samples (W+light flavours and heavy flavours). •
 - Each of them normalized using data observation in W+jets enriched region (w/ w/o the b-tagging requirement).
 - Global normalisation applied using the charge asymmetry. •

$$N_{W^+} + N_{W^-} = \left(\frac{r_{\rm MC} + 1}{r_{\rm MC} - 1}\right) (D_{\rm corr+} - D_{\rm corr-}),$$

- Multijet background
 - Using the matrix method.

Single lepton ttbar resonances

[ATLAS-CONF-2013-052] [PRD88,012004 (2013)]

Reconstruction of ttbar pairs

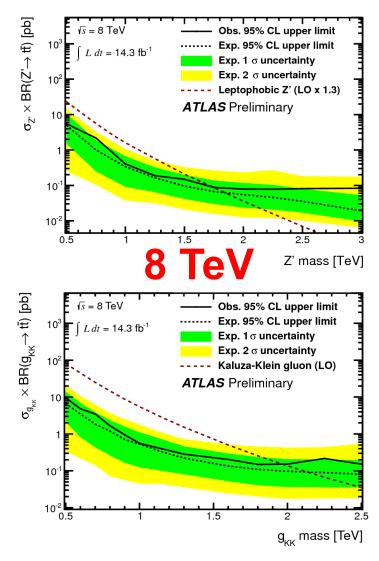
$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{t_{h}-W}}{\sigma_{t_{h}-W}}\right]^{2} + \left[\frac{m_{j\ell\nu} - m_{t_{\ell}}}{\sigma_{t_{\ell}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,j\ell\nu}) - (p_{T,t_{h}} - p_{T,t_{\ell}})}{\sigma_{diff p_{T}}}\right]^{2},$$

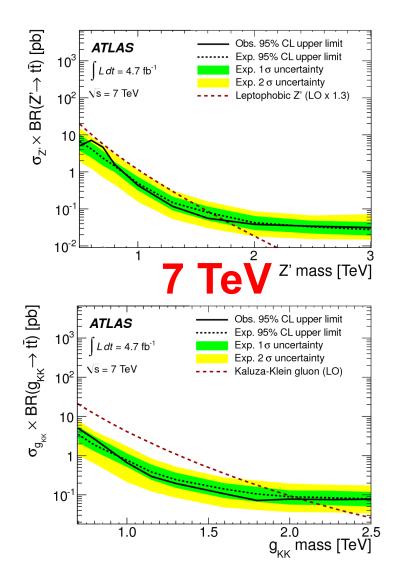
Fully-resolved

$$\chi^{2} = \left[\frac{m_{jJ} - m_{jJ}^{t_{h}}}{\sigma_{jJ}^{t_{h}}}\right]^{2} + \left[\frac{m_{j\ell\nu} - m_{t_{\ell}}}{\sigma_{t_{\ell}}}\right]^{2} + \left[\frac{(p_{\mathrm{T},jJ} - p_{\mathrm{T},j\ell\nu}) - (p_{\mathrm{T},t_{h}} - p_{\mathrm{T},t_{\ell}})}{\sigma_{\mathrm{diff}p_{\mathrm{T}}}}\right]^{2},$$

Semi-boosted

Single lepton ttbar resonances

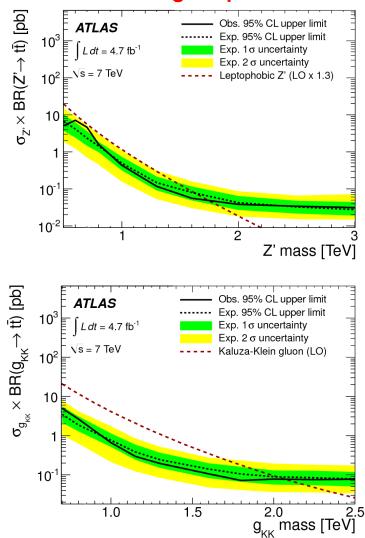

[ATEAS-CONF-2013-032] [FRD00,012004 (2013)]


Systematic uncertainties

	Resolved selection		Boosted selection	
	yield impact [%]		yield impact [%]	
Systematic Uncertainties	total bkg.	Ζ'	total bkg.	Ζ'
Luminosity	2.9	4	3.3	4
PDF	2.9	5	6	2.9
ISR/FSR	0.2	_	0.7	
Parton shower and fragm.	5	_	4	
<i>tī</i> normalization	8	_	9	
$t\bar{t}$ EW virtual correction	2.2	_	4	-
$t\bar{t}$ Generator	1.5	_	1.6	_
W+jets $b\bar{b}+c\bar{c}+c$ vs. light	0.8	_	1.0	-
W+jets $b\bar{b}$ variation	0.2	_	0.4	_
W+jets c variation	1.1	_	0.6	_
W+jets normalization	2.1	_	1.0	-
Multi-Jet norm, <i>e</i> +jets	0.6	_	0.3	-
Multi-Jet norm, μ +jets	1.8	_	0.3	-
JES, small-radius jets	6	2.2	0.7	0.5
JES+JMS, large-radius jets	0.3	4	17	3.3
Jet energy resolution	1.6	0.4	0.6	0.7
Jet vertex fraction	1.7	2.3	2.1	2.4
<i>b</i> -tag efficiency	4	1.8	3.4	6
<i>c</i> -tag efficiency	1.4	0.3	0.7	0.9
Mistag rate	0.7	0.3	0.7	0.1
Electron efficiency	1.0	1.1	1.0	1.0
Muon efficiency	1.5	1.5	1.6	1.6
All systematic uncertainties	14	9	22	9

Single lepton results @ 7 TeV vs 8 TeV

[ATLAS-CONF-2013-052] [PRD88,012004 (2013)]



Single lepton vs Fully-hadronic @ 7 TeV

[ATLAS-CONF-2013-052] [PRD88,012004 (2013)]

Single lepton

Sample	Mass limits [TeV] 95 % CL limits
Z'	0.70 – 1.00 1.28 – 1.32
Я _{кк}	0.70 - 1.62

Full-hadronic