Learning how to count A high multiplicity search for the LHC

Sonia El Hedri

with

Anson Hook, Martin Jankowiak and Jay Wacker

August 13, 2013

arXiv:1302.1870v1

Overview

Counting subjets

Results

Handles to look at new physics signals:

- Leptons
- Heavy flavor jets (b-tagging)
- Kinematic reconstruction (m_T , MT2, ...)
- Boosted jets, tagging using jet substructure
- High p_T jets, radius R = 0.4, 0.5
- Missing E_T

One target: natural SUSY

Decouple all particles not cancelling the top quadratic divergences

> 12 jet signals from natural SUSY

Other signals: RPV, strong dynamics, cascade decays, ...

- Dominating if the light particles are hard to see
- Low production rate
- Signatures distributed across many channels
 - Exclusive searches are low efficiency
 - Inclusive searches are high background

Traditional approaches

- Cluster thin jets, R = 0.4 0.5, $p_T > 50 \,\mathrm{GeV}$
- Cut on the number of jets
- ► Cut on ∉_T

But

- Soft jets, $p_T \sim 50 \, {
 m GeV}$
- ► Low ∉_T
- Parton shower adds jets
- Complicated phase space (3^{N_j})
- No top tagging

Jets hard to resolve individually ...

...or accidental boost!

Using fat jet techniques on high multiplicity events

QCD still dominates, even with a $\not \in_T$ cut

Using fat jet techniques on high multiplicity events

"Count" the number of subjets using jet substructure techniques

Signal

Background

$$N = \sum_{i} N_{i}^{subjets}$$

Overview

Counting subjets

Results

The exclusive k_t algorithm

 $\blacktriangleright d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2$

The exclusive k_t algorithm

d_{ij} = min(*p*²_{Ti}, *p*²_{Tj})∆*R*²_{ij}
 Cluster soft components first

The exclusive k_t algorithm

- $\bullet \ d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2$
- Cluster soft components first
- ▶ Stops when *d_{ij}* > *d_{cut}*

► Find *d_{cut}* which maximizes S/B

$$\sqrt{d_{cut}} = 0.065 \, p_{TJ}$$

- Run the exclusive k_T algorithm
- Select jets with $p_T > 40 \,\mathrm{GeV}$

Advantages of k_T

Soft wide angle radiation is clustered with the hard jets QCD jets have a low n_{k_T}

$$d_{ij} = \Delta R_{ij}^2 \tag{1}$$

Cluster the jet with CA and go down the clustering tree

Uncluster j into j₁ and j₂

$$d_{ij} = \Delta R_{ij}^2 \tag{2}$$

- Uncluster j into j_1 and j_2
- If p_Ts are imbalanced, remove soft jet

$$d_{ij} = \Delta R_{ij}^2 \tag{3}$$

- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet
- Keep subjets with
 *p*_T > *p*_{Tcut}

$$d_{ij} = \Delta R_{ij}^2 \tag{4}$$

- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet
- Keep subjets with
 *p*_T > *p*_{Tcut}

$$d_{ij} = \Delta R_{ij}^2 \tag{5}$$

- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet
- Keep subjets with
 *p*_T > *p*_{Tcut}

$$d_{ij} = \Delta R_{ij}^2 \tag{6}$$

- Uncluster j into j₁ and j₂
- If p_Ts are imbalanced, remove soft jet
- If m_j < m_{cut} or d₁₂ < R_{min}, j is a subjet
- Keep subjets with
 *p*_T > *p*_{Tcut}

Counting with CA

- Subjets consistent with the decay of a massive particle
- Soft radiation discarded
- $m_{cut} = 30 \,\text{GeV}$, $y_{cut} = 0.10$, $R_{min} = 0.15$, $p_{Tcut} = 30 \,\text{GeV}$

fastjet.hepforge.org/trac/browser/contrib/ contribs#SubjetCounting

Overview

Counting subjets

Results Existing searches Exclusion bounds

ATLAS high multiplicity search

ATLAS-CONF-2012-103

- ▶ 8 TeV, 5.8fb⁻¹
- Anti- k_t algorithm with R = 0.4
- ▶ 7, 8 or 9 jets with $p_T > 55 \, \text{GeV}$
- 6, 7 or 8 jets with $p_T > 80 \, {
 m GeV}$

CMS black hole search

CERN PH-EP/ 2012 045

- ▶ 7 TeV, 4.7fb⁻¹
- Anti- k_t algorithm with R = 0.5
- cut on number of objects with *E_T* > 50 GeV

 $n\in\{2,4,6\}$

• cut on $S_T = \sum E_{Tobj} + \not\!\!E_t$ $S_{Tmin} \in [1.9, 4.1] \, \text{GeV}$ Fat jet mass

$$M_J = \sum_{j \in \text{jets}} m_j$$

Searches

$N_{\text{iets}} \operatorname{cut} + \not \!\! E_T \operatorname{cut} (\text{ATLAS})$ VS $N_{\rm objects}$ cut + S_T cut (CMS) VS $M_J \operatorname{cut} + \not\!\!\!E_T \operatorname{cut}$ VS $M_J \operatorname{cut} + \not\!\! E_T \operatorname{cut} + N_{\operatorname{subjets}} \operatorname{cut}$

Benchmark models

Tops jets?Cascade decay?RPV? \rightarrow $t\bar{t}\chi_i^0$ $\chi_i^0 \rightarrow VV\chi_1^0$ $\chi_1^0 \rightarrow jjj$ +12 jets+8 jets+6 jets

- 8 possible topologies
- from 4 to 26 jets

Benchmark models and searches

Optimal cuts depend on :

- Jet multiplicity
- ► ∉_T
- Presence of leptons
- Mass of the initial particle m_{g̃}

Inclusive search:

- Leptons clustered with jets
- ► Find minimal number of cuts on M_J + ∉_T + ... so that the bounds are close to optimal
 - For each signal
 - For each mass

Gluino decay to light quarks, RPV

Gluino decay to light quarks, RPV – 8 TeV, 30 ${\rm fb}^{-1}$

Gluino decay to light quarks, RPV – 8 TeV, $30 \, {\rm fb}^{-1}$

- ▶ Factor of 2 to 4 improvement over $M_J + \not \in_T$ and CMS
- ► M_J cut loosened
- CA slightly better than k_T

Gluino 2 step decay, RPV

Gluino 2 step decay, RPV – 8 TeV, $30 {\rm fb}^{-1}$

- S_T cut too large for CMS search
- *M_J* + ∉_T search better at high mass

Gluino 2 step decay, RPV – 8 TeV, $30 {\rm fb}^{-1}$

- Factor of \sim 4 improvement over M_J + MET
- \blacktriangleright Factor of ~ 5 improvement over ATLAS at high mass
- CA slightly better than k_T

- Common new physics scenarios predict events with very high multiplicity
- Standard handles not appropriate (not boosted, complicated kinematics, low energy)
- Fat jet techniques are more robust but requires finding new jet substructure variables
- Counting subjets in an event provides good discriminating power
- ► M_J and $\not\in_T$ cuts loosened, could be used to probe $\not\notin_T$ -less signals
- Allows to make data driven estimates of the QCD background

Backup

Signal and background distributions

Scaling patterns

Scaling patterns

Correlations between N_{CA} and N_{k_T}

Correlations between N_{CA} and N_{k_T}

Correlations between N_{CA} and N_{k_T}

N_{CA} vs M_J

N_{CA} vs M_J

