Boosted jet algorithm development

Emanuele Usai on the behalf of the CMS Collaboration

August 15, 2013

Top tagging

Data/MC comparison

W tagging

- Substructure variables
- Data/MC comparison
- Optimization
- Performance and behavior in particular scenarios

Top tagging

based on CMS-PAS-B2G-12-005

Top tagging in CMS

- Based on JHU Top Tagger (Kaplan et al.)
- Cluster a jet using CA R=0.8
- Decluster in two stages in order to find up to 4 subjets

- Subjets must satisfy two requirements
 - Momentum fraction criterion: $p_{T \ subjet} > 0.05 \times p_{T \ jet}$
 - Adjacency criterion: ΔR(C₁, C₂) > 0.4 − 0.0004 × p_T(C)
- Remove subjets which fail momentum fraction cut and try to decluster again
- Tagging variables
 - Jet mass (m_{jet})
 - Number of subjets (N_{sub})
 - Minimum pairwise mass (m_{min}) of leading 3 subjets m_{min} = min(m₁₂, m₁₃, m₂₃)

Jet collection:

start from CA R=0.8 jets

Use jet mass pruning (see Ellis, Vermillion, Walsh [arXiv:0903.5081] and CMS-PAS-SMP-12-019):

- recluster the jet using all CA8 jet particles
- for each recombination ignore the softer protojet if
 - ▶ $z = \min(p_T^i, p_T^j)/p_T^p < 0.1$, where *i*, *j* for protojets, and p_T^p for combined jet.
 - $\Delta R > D_{\text{cut}} = 0.5 \times m^{\text{orig}} / p_T^{\text{orig}}$ with respect to the previous recombination step, m^{orig} and p_T^{orig} for original CA8 jet.

Event topologies

 $t\bar{t}$ event selection: common leptonic selection

Hadronic top fully merged

 $\blacktriangleright\,$ 1 CA 0.8 jet opposite to μ

Hadronic top partially merged

- $\blacktriangleright~1$ W-tagged CA0.8 jet opposite to μ
- 1 b-jet (closest jet to W-jet)

Partially merged top hadronic decay

Mass of W candidate:

- highest-mass jet in the hemisphere opposite the identified muon.
- pruned jet mass

Top candidate mass

- combined invariant mass of W candidate and closest jet to W candidate
- No b-tagging on closest jet to W candidate

Fully merged top hadronic decay

Top candidates after a semileptonic $t\bar{t}$ selection and CMSTopTagger requirements.

Used to derive CMSTopTagger Data/MC correction.

Minimum pairwise mass, W candidate

 Grayed area is MC normalization uncertainty Top jet mass distribution

- Top tagged
- $m_{min} > 50 GeV$

Event display

Current status:

- CMSTopTagger is a mature and performing tool widely used in CMS analyses
- New developments like b-tagging in subjets make this tool even more performing. See Ivan Marchesini's talk.

Coming soon:

- HEPTopTagger is being commissioned with CMS data
- Document under review, results will be public soon! (CMS-PAS-JME-13-007)

W tagging

based on CMS-PAS-JME-13-006
http://cds.cern.ch/record/1577417

Event topologies considered

Benchmark signal: $X \rightarrow W_L W_L$, $M_X = 600 \ GeV$, $1 \ TeV$

MC samples and showering models

Next slides show Data/MC comparisons for different generators and showering models. The comparisons are made with these particular version and tuning of the generators:

Montecarlo samples

QCD

- MADGRAPH + PYTHIA6
- ► HERWIG++
- PYTHIA8

W+jets

- MADGRAPH + PYTHIA6
- ► HERWIG++

tŦ

- POWHEG + PYTHIA6
- MC@NLO + HERWIG++

Signal $(X \rightarrow W_L W_L)$

▶ JHU GENERATOR + PYTHIA6

Signal $(H \rightarrow WW)$

POWHEG + PYTHIA6

Tuning of showering models PYTHIA6 • version 6.426, tune Z2* PYTHIA8 • version 8.153, tune 4C

HERWIG++

version 2.5.0, tune 23

$$p_T = 250 - 350 \text{ GeV}$$

(W+jets)

- Signal sample peaks at W mass
- QCD jets mass peaks at low masses after jet pruning
- CMS detector simulation + pileup results in broadening of W mass peak and shift towards higher mass values
- Pileup dependence for 12 and 22 average PU interactions is small due to jet pruning
- from now on a pruned jet mass cut 60 < m_{jet} < 100 is used.</p>

Data-montecarlo comparisons - pruned jet mass

- overall good agreement
- different parton shower models
- Pythia 6 appears to be the worst
- QCD only

- worse agreement at low mass
- other non-dominant background processes present (tt)

- W peak visible
- single-top main background process
- Data/MC disagreement motivates Data/MC correction factor measurement

Substructure variables

Mass drop, µ: Two subjets are obtained by undoing the last iteration of the pruned jet clustering. The ratio of masses of the highest mass subjet (m₁) and the total pruned jet mass is defined as the mass drop µ = m_{1/m_{ter}.}

N-subjettiness, \u03c6_N: For N subjets of a given jet:

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$$

k runs over all constituent particles, $d_0 = \sum_k p_{T,k} R_0$, and R_0 is the original jet radius. The τ_N observable is in effect, a measure of how many subjets a jet has. For boosted W identification the ratio τ_2/τ_1 is of particular interest.

- Qjet volatility, Γ_{Qjet}: Defined as the RMS of the mass distribution of jet trees over the average jet mass, volatility = RMS/(m). Where N_{trees} is chosen to be 50.
- Generalized energy correlation functions, C^β₂: The 3-point correlation function is particularly useful for W-tagging.

$$C_{2}^{\beta} = \frac{\sum_{i,j,k} p_{Ti} p_{Tj} p_{Tk} (R_{ij} R_{ik} R_{jk})^{\beta} \sum_{i} p_{Ti}}{(\sum_{i,j} p_{Ti} p_{Tj} (R_{ij})^{\beta})^{2}}$$

b Jet charge, Q^{κ}

$$Q^{\kappa} = \frac{\sum_{i} q_{i}(p_{Ti})^{\kappa}}{(\sum_{i} p_{Ti})^{\kappa}}$$

Provides additional discrimination between quark and gluon jets or between BSM signals.

All variables studied on top of the pruned jet mass cut ($60 < m_{pruned} < 100 \text{ GeV}$).

Substructure variables: mass drop, μ

 $p_T = 250 - 350 \text{ GeV}$ (W+jet) - no pruned mass cut

Good discrimination power

 $p_T = 250 - 350 \text{ GeV}$ (W+jet) - pruned mass cut

Discrimination power reduced: correlation with mass cut

Mass drop: Data/MC comparison

Right plot: Real W jets in green at low mass.

Substructure variables: N-subjettiness

Three variants considered:

- \blacktriangleright τ_2/τ_1 : one step optimization of the k_T subjet axes
- $\tau_2/\tau_1 k_T$ axes: no optimization
- pruned τ_2/τ_1 : uses only pruned constituents + one pass optimization.

 $p_T = 400 - 600 \text{ GeV}$

(dijet) - no pruned mass cut

$$p_T = 400 - 600 \text{ GeV}$$

(dijet) - pruned mass cut

τ_2/τ_1 : Data/MC comparison

Common ascending trend in the Data/simulation ratio in function of τ_2/τ_1

Disagreement motivates measurement of Data/MC correction factor Right plot: Pythia8 best modeling, Herwig worst agreement

Substructure variables: Qjet volatility, Γ_{Qjet}

 $N_{
m trees} = 50$ $N_{
m preclustered components} = 35$ lpha = 0.1

 $p_T = 250 - 350 \text{ GeV}$ (W+jets) - no pruned mass cut

$$p_T = 250 - 350 \text{ GeV}$$
 (W+jets) - pruned mass cut

Γ_{Qjet} : Data/MC comparison

Retains good discrimination power also after mass cut

Substructure variables: generalized energy correlation function, C_2^β

Mass cut has small impact on the discriminating power of this variable.

Optimization

 $60 < m_{
m pruned} < 100~{
m GeV}$

Mistag vs efficiency

- background: QCD, signal: $H \rightarrow WW$
- pruned jet mass cut 60 < m < 100 GeV
- τ₂/τ₁ best single variable discriminator
- neural network trained with TMVA shows improvement over \(\tau_2/\tau_1\)
- other variables correlated with au_2/ au_1

MVA variables

- Pruned mass drop m^{drop}_{pr}
- Q-jet volatility Γ_{Qjet}
- N-subjettines τ₂/τ₁
- Planar flow R = 0.5
- Number of jet constituents
- Subjet ΔR
- Trimmed grooming sensitivity
- Number of primary vertices N_{PV}

Correlation matrix (signal)

Correlation matrix for the input variables given to the MVA evaluated on signal sample ($gg \rightarrow H$ at $m_H = 600$ GeV)

Correlation matrix (background)

Correlation matrix for the input variables given to the MVA evaluated on background (W+jets Pythia $p_T>180$ GeV)

26

Performance in function of p_T

Performance studied for: 60 $< m_{jet} <$ 100 GeV + $au_2/ au_1 <$ 0.5

Efficiency vs p_T (W+jets topology)

- Iow p_T: W decay products begin to be reconstructed inside CA8 jets
- high p_T: detector resolution for jet substructures degrades, pruning remove too much of the mass of the W

• drops at high p_T similarly to efficiency

Fake rate vs p_T (dijet topology)

Quark vs gluons - fake rate

gluon jets have on average higher mass → fake rate higher with mass only cuts
 quark jets tend to have lower τ₂/τ₁ → cut fake rate is similar

- gluon jets tend to have larger mass
- before mass cut gluon jets appear more W-jets-like with respect to τ_2/τ_1
- after mass cut quark jets appear more W-jets-like with respect to au_2/ au_1

Performance studied for the following working point: 60 $< m_{jet} <$ 100 GeV + $\tau_2/\tau_1 <$ 0.5

Extract:

- Data/MC correction for W-tagging efficiency
- W-jet mass scale
- W-jet mass resolution

	data	MC	scale factor / shift
efficiency 200 <p_<265 gev<="" td=""><td></td><td></td><td>* 0.96 +- 0.08</td></p_<265>			* 0.96 +- 0.08
efficiency 265 <p_<600 gev<="" td=""><td></td><td></td><td>* 0.89 +- 0.10</td></p_<600>			* 0.89 +- 0.10
mass peak position	84.5 +- 0.4 GeV	83.4 +- 0.4 GeV	+1.1 +- 0.4 GeV
mass peak width	8.7 +- 0.6 GeV	7.5 +- 0.4 GeV	+16% +- 9%

Polarization studies

- Polarization can affect substructure distribution
- ▶ Sample used: scalar $X \to W_{lept}^L W_{had}^L$ and $X \to W_{lept}^T W_{had}^T$

 parton level helicity angle for hadronic W observable helicity angle from subjets

Polarization studies - τ_2/τ_1

- ▶ pruned jet mass acceptance different for W_L and W_T
- ΔR between partons smaller on average for W_L
- W_L more likely to be accepted by CA8 jet
- in W_T topology p_T of the subjets is more asymmetric, thus more QCD-like

Jet charge, Q^{κ}

$$Q^{\kappa} = \frac{\sum_{i} q_{i}(p_{Ti})^{\kappa}}{(\sum_{i} p_{Ti})^{\kappa}}$$

Used to discriminate between $\mathsf{W}+$ and $\mathsf{W}\text{-}$

Right plot, note: <**jet charge** $> \neq$ **0**

Jet charge distribution

 $t\bar{t}$ sample for W⁺ and W⁻ jets in simulation and data. Simulated distributions are a sum of all processes.

- W-tagging studied in association with several substructure variables
- Performance assessed for these variables (ROC curves)
- Behavior studied in various scenarios (polarization, quark and gluons, etc.)
- Comparison with 8TeV data for different showering models
- Jet charge variable has encouraging discrimination power for W-jet charge in Data

Thank you for the attention!

Backup

Mistag vs efficiency

- at high p_T discrimination power is better for W_L
- W_T are more QCD-like at more boosted regimes
- τ_2/τ_1 works the best in both cases

High p_T behavior

- At generator level, pruning still performs very well at high p_T
- Degradation of detector level substructure at high p_T
- pruning rejects too many particles in the W jet
- pruned W jet mass peaks between 40 and 60 GeV
- τ_2/τ_1 discrimination power is also reduced at high pt

Performance in function of number of vertices

Efficiency vs Nvtx (W+jets topology)

- slight degrade of performance
- jet pruning fails to remove all soft contributions

Fake rate vs Nvtx (dijet topology)

 constant behavior with respect to Nvtx

Event topologies considered

W+jets

- $|\eta| < 2.1/2.4$
- ▶ Jet $|\eta| < 2.4$
- $\Delta R_{l,j} > \pi/2, \ \Delta \phi_{V,j} > 2, \\ \Delta \phi_{MET,j} > 2$
- MET > 50/70 GeV
- Leptonic W pT > 200 GeV
- anti-CSVM-btag

Signal X
ightarrow WW, $M_X = 600~GeV/c^2,~1TeV/c^2$

tī

- Similar to W+jet case
- \blacktriangleright \geq AK5 b-jet
- choose the highest mass CA8 opposite to the lepton
- for mu:*pt* > 50*GeV*, *ET* > 50*GeV*
- for electrons: pt > 90GeV, ET > 80GeV

Top tagging in CMS

CMS Top tagger, based on algorithm by Kaplan et al.

- ► Cambridge-Aachen R = 0.8 ($R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$) jets (hard-jets) are used as input
- the primary decomposition: attempts to split the hard jet into two subjets by reversing the pairwise clustering sequence
- continue to the next step if the two subclusters satisfy $R^2 > 0.4 0.0004 \times p_T^{\text{orig. subcl.}}$
- if the two subclusters satisfy the momentum fraction criterion $p_T^{\text{cluster}} > 0.05 \times p_T^{\text{hardjet}}$, then the decomposition succeeds ("jet grooming")
- if only one subcluster satisfy the momentum fraction criterion the decomposition is repeated on the passed cluster.
- secondary decomposition: repeat the decomposition on the subclusters passing the primary decomposition.

Additional cuts:

- ▶ 140 < $m_{\rm jet}$ < 250 GeV/c²
- ► N_{subjets} ≥ 3
- Minimum pairwise mass, $m_{\rm min} > 50 \ {\rm GeV/c^2}$

CMSTopTagger performance in 7TeV data

CMSTopTagger additional plots

