

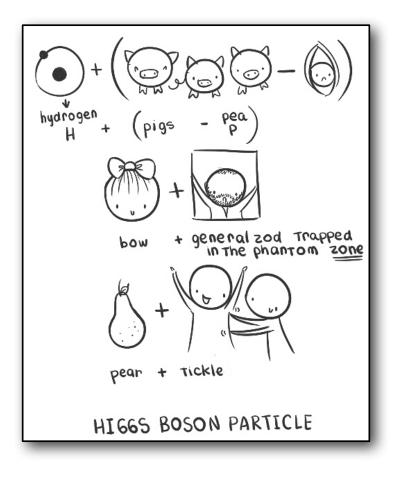
New Yor (Ye) (Ye) basis (Jay Waler (JaY), Lindow Way (J. Grasp Jack Spacing Gamiller: Biot Cas (J. Karnel, Michael J. Karnel, Karl (M.). Asses Your Galy (J. Karnel, Wale Lang) Karnel, Yes (J. 4) <u>Asses</u>

Nhan Tran Fermi National Accelerator Laboratory on behalf of the CMS collaboration

 $H \rightarrow bb$ and $H \rightarrow VV$ in

boosted topologies at CMS

August 15th, 2013 BOOST 2013 Workshop

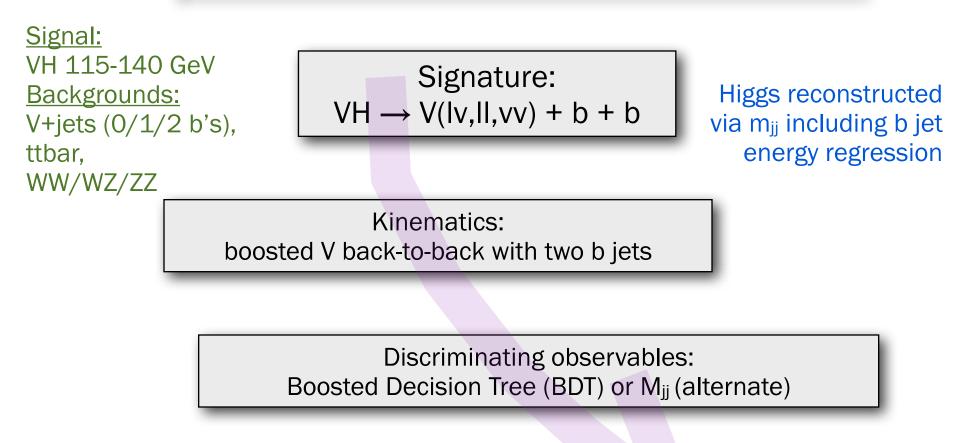


introduction


- A new boson discovered at 125 GeV
 - Is it the SM Higgs boson?
 - Is it responsible for EW symmetry breaking?
- Focus on Higgs searches in "boosted topologies"
 - H→bb: No observation yet of direct couplings H(125) to fermions
 - $H \rightarrow VV$:
 - At low mass main discovery channels (ZZ→4I, γγ, WW→IvIv)
 - At high mass extended Higgs sector? Is H(125) fully responsible for EW symmetry breaking?

- A new boson discovered at 125 GeV
 - Is it the SM Higgs boson?
 - Is it responsible for EW symmetry breaking?
- Focus on Higgs searches in "boosted topologies"
 - H→bb: No observation yet of direct couplings H(125) to fermions
 - $H \rightarrow VV$:
 - At low mass main discovery channels (ZZ→4I, γγ, WW→IvIv)
 - At high mass extended Higgs sector? Is H(125) fully responsible for EW symmetry breaking?

- Search for SM Higgs boson in $VH \rightarrow Vbb$
 - Moderately boosted analysis in 6 final states
 - mature analysis -- many generations
 - others: boosted HTT and VBF Hbb analyses
- Search for Higgs-like boson in $H \rightarrow WW \rightarrow VJ$
 - Highly boosted analysis, both SM and beyond the SM interpretations
 - Jet substructure W-tagging methods
- Future prospects and summary


References CMS PASes: HIG-13-008, HIG-13-012

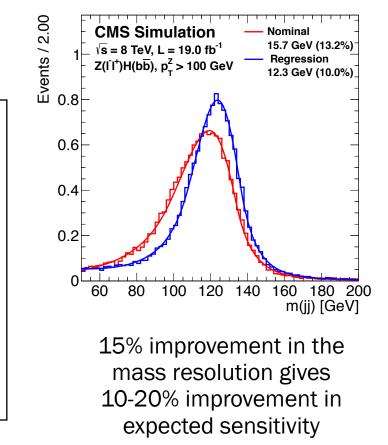
VH→ff+bb

ZH→eebb, ZH→µµbb, ZH→vvbb WH→evbb, WH→µvbb, WH→tvbb

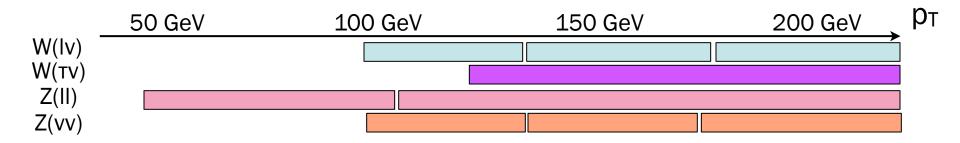
data-driven background extraction using simultaneous fit in multiple control regions

Binned shape limits using BDT or M_{jj} shape

CMS $\sqrt{s} = 7$ TeV dataset, 5 fb⁻¹ and $\sqrt{s} = 8$ TeV dataset, 19 fb⁻¹ Triggers:


single/double lepton triggers, tau + MET trigger, MET + jet trigger

VH
$$\rightarrow$$
 {I (e,µ) and/or MET} + bb


Physics Objects - particle flow inputs

muons/electrons: $pT(\mu,e) > 30 (35) \text{ GeV}$ taus: single prong tau, $pT(\tau) > 40 \text{ GeV}$ missing transverse energy: MET(μ,e) > 50 (70) GeV jets: cluster with AK5, Combined secondary vertex discriminant is used to identify b jets, b jet energy regression is applied.

b jet energy regression is validated in data using Z(II)Z(bb) and top-enriched events

Kinematic observables are combined into a multivariate BDT discriminant

Full set of kinematic cuts for BDT and m_{jj} analyses are defined in the backup

Boosted Decision Tree inputs $pT(j1,j2), m_{jj}, pT_{jj}, pT_V$ CSV_{max}, CSV_{min} $\Delta\phi(V,H), \Delta\eta_{jj}, \Delta R_{jj}, N_{aj}, \Delta\theta_{pull}, \Delta\phi(MET,j)$ Additional kinematics: $m_{HV}, \theta_{ZZ^*}, \theta_{ZI}$

VH and jet substructure: sorry, no plots...
Dedicated studies have been performed to determine the added sensitivity from using substructure quantities
CA12 mass-drop + filtering jets are explored adding the filtered subjets information when existing, pT_J, m_J, (m_J -m_{jj})
Subjet energy regression also is applied indicating improvements in simulation
Ultimately results do not include these developments, LHC Run I data not enough to take advantage of boosted techniques

scale factors across all channels

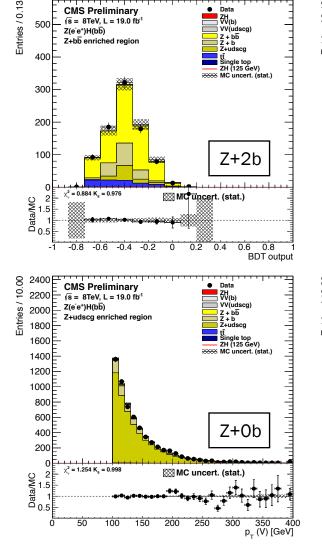
Process	$W(\ell\nu)H$	$Z(\ell\ell)H$	$Z(\nu\nu)H$
Low $p_{\rm T}$			
W0b	$1.03 \pm 0.01 \pm 0.05$	_	$0.83 \pm 0.02 \pm 0.04$
W1b	$2.22 \pm 0.25 \pm 0.20$	Contraction and Contraction and Contraction of the	$2.30 \pm 0.21 \pm 0.11$
W2b	$1.58 \pm 0.26 \pm 0.24$	_	$0.85 \pm 0.24 \pm 0.14$
Z0b	_	$1.11 \pm 0.04 \pm 0.06$	$1.24 \pm 0.03 \pm 0.09$
Z1b		$1.59 \pm 0.07 \pm 0.08$	$2.06 \pm 0.06 \pm 0.09$
Z2b	_	$0.98 \pm 0.10 \pm 0.08$	$1.25 \pm 0.05 \pm 0.11$
tī	$1.03 \pm 0.01 \pm 0.04$	$1.10 \pm 0.05 \pm 0.06$	$1.01 \pm 0.02 \pm 0.04$
Intermediate $p_{\rm T}$			
W0b	$1.02 \pm 0.01 \pm 0.07$	_	$0.93 \pm 0.02 \pm 0.04$
W1b	$2.90 \pm 0.26 \pm 0.20$		$2.08 \pm 0.20 \pm 0.12$
W2b	$1.30 \pm 0.23 \pm 0.14$	_	$0.75 \pm 0.26 \pm 0.11$
Z0b	_	_	$1.19 \pm 0.03 \pm 0.07$
Z1b		and a second s	$2.30 \pm 0.07 \pm 0.08$
Z2b	_	_	$1.11 \pm 0.06 \pm 0.12$
tī	$1.02 \pm 0.01 \pm 0.15$	_	$0.99 \pm 0.02 \pm 0.03$
High <i>p</i> _T			
W0b	$1.04 \pm 0.01 \pm 0.07$	_	$0.93 \pm 0.02 \pm 0.03$
W1b	$2.46 \pm 0.33 \pm 0.22$		$2.12 \pm 0.22 \pm 0.10$
W2b	$0.77 \pm 0.25 \pm 0.08$	_	$0.71 \pm 0.25 \pm 0.15$
Z0b	_	$1.11 \pm 0.04 \pm 0.06$	$1.17 \pm 0.02 \pm 0.08$
Z1b		$1.59 \pm 0.07 \pm 0.08$	$2.13 \pm 0.05 \pm 0.07$
Z2b	_	$0.98 \pm 0.10 \pm 0.08$	$1.12 \pm 0.04 \pm 0.10$
tĪ	$1.00 \pm 0.01 \pm 0.11$	$1.10 \pm 0.05 \pm 0.06$	$0.99 \pm 0.02 \pm 0.03$

Strategy is to derive datadriven scale factors for the main backgrounds

Define control samples and perform simultaneous fit of the yields of backgrounds:

V + Ob V + 1b V + 2b tt

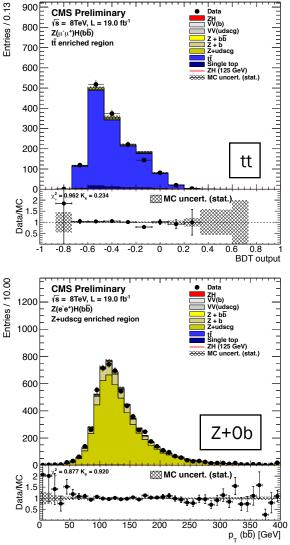
Most scale factors are near unity except for V+1b events. Interpretation: mismodeling of g to bb in parton shower modeling

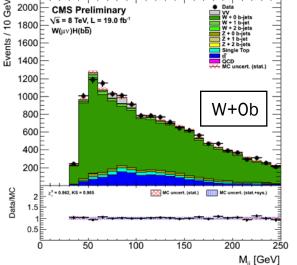

validation of scale factors, BDT

Data

ZH VV(b)

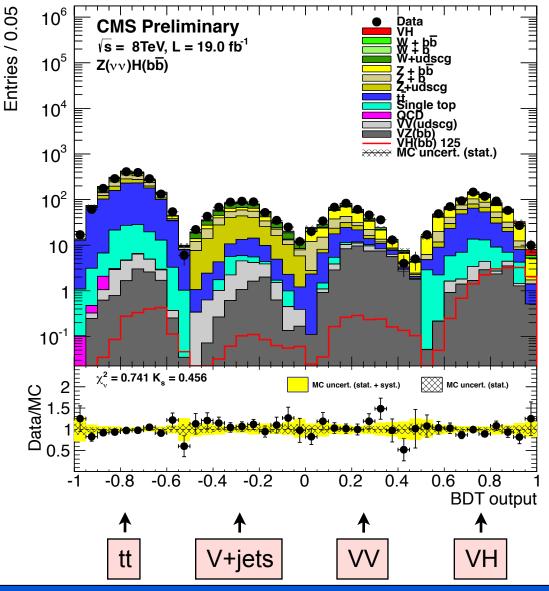
VV(udscg)


A smattering of validation plots for data/MC distributions in the control regions post-fit.



CMS Preliminary

(s = 8TeV, L = 19.0 fb⁻¹


500

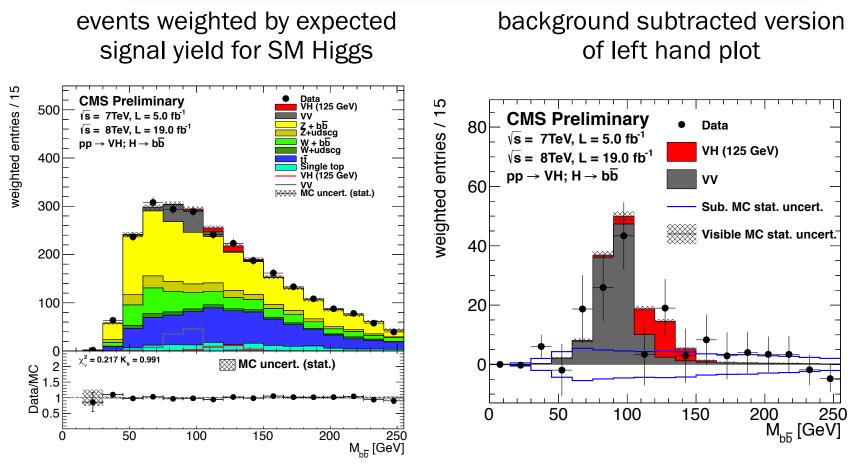
multi-BDT approach

For channels with multiple significant background contributions, WH/Z(vv)H.

Train in multiple BDT in different categories on different background contributions.

Shows 5-10% improvement in expected limits

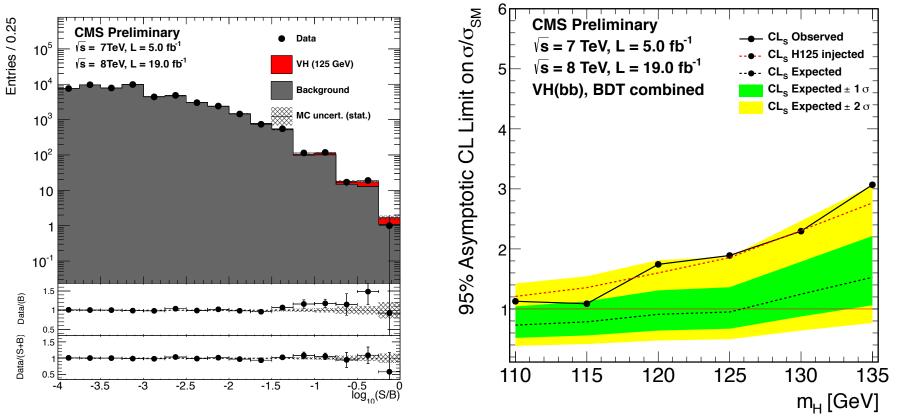
Z(II)H and W(TV) use a single BDT discriminant


systematics

		Yield uncertainty (%)	Contribution to	Removal effect on
Source	Туре	range	uncertainty (%)	total uncertainty (%)
Luminosity	normalization	2.2-4.4	< 2	< 0.1
Lepton efficiency and trigger (per lepton)	normalization	3	< 2	< 0.1
$Z(\nu\nu)H$ triggers	shape	3	< 2	< 0.1
Jet energy scale	shape	2–3	5.0	0.5
Jet energy resolution	shape	3–6	5.9	0.7
Missing transverse energy	shape	3	3.2	0.2
b-tagging	shape	3–15	10.2	2.1
Signal cross section (scale and PDF)	normalization	4	3.9	0.3
Signal cross section (p_T boost, EWK/QCD)	normalization	2/5	3.9	0.3
Signal Monte Carlo statistics	shape	1–5	13.3	3.6
Backgrounds (data estimate)	normlization	10	15.9	5.2
Single-top (simulation estimate)	normalization	15	5.0	0.5
Dibosons (simulation estimate)	normalization	15	5.0	0.5
MC modeling (V+jets and tt)	shape	10	7.4	1.1

• Shape uncertainties

- b tagging, JER/JES, trigger, generator modeling, bin-by-bin statistics
- Normalization uncertainties
 - scale factors, signal cross-section
- Uncertainties total ~15%

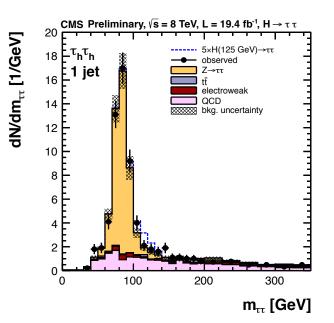


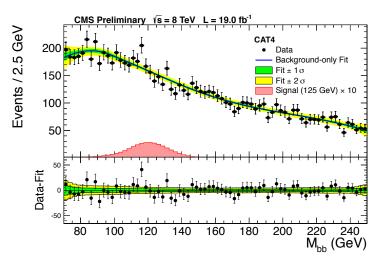
- A complimentary analysis is run using just the m_{jj} mass distribution
- Higgs boson signal strength measured as 0.76^{+0.68}-0.66
- Validation: re-training the BDT for VZ \rightarrow Vbb gives a 7.5 σ excess (8 TeV only)

results

events weighted by expected signal yield for SM Higgs

- For visualization, combined BDT distribution
- Observed limits consistent with SM Higgs injected expected limits
- P-value: 2.1σ, Higgs best-fit signal strength: 1.0^{+0.5}-0.5

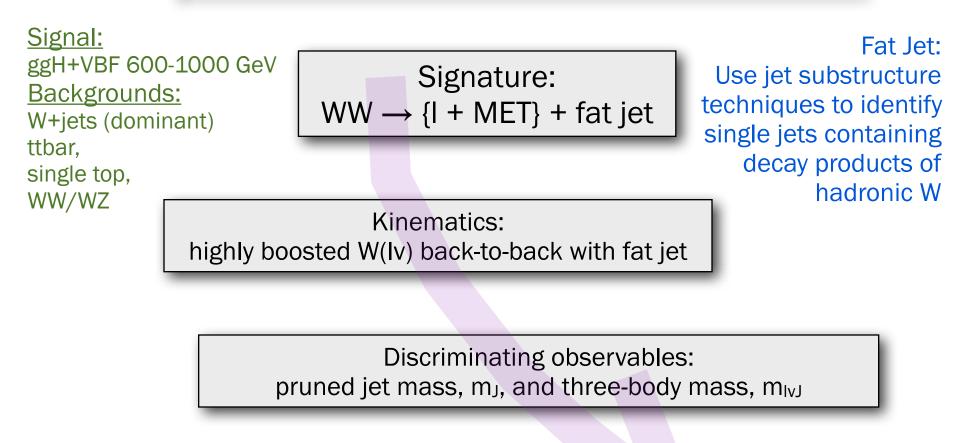

• H→tt


- MVA MET object which takes advantage of PU Jet ID
- VBF (p_T > 100 GeV) and 1-jet (p_T > 150 GeV) categories for T_HT_H requires a boosted H(TT) system

• VBF H→bb

- quark-gluon discrimination is used to better identify VBF jets
- moderate boost required of the bb system (p_T > 100 GeV)

References CMS PASes: HIG-13-004, HIG-13-011

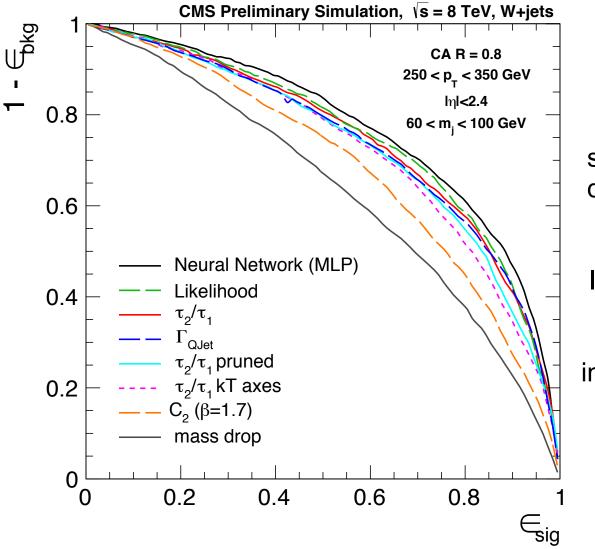


$H \rightarrow WW \rightarrow |_V J$

several related analyses: Exotic high mass WW resonances^ WW scattering anomalous triple gauge couplings

^ see talk be P. Maksimovic

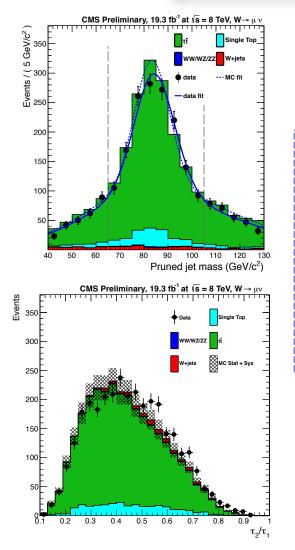
data-driven background extraction of dominant background shape using mJ sideband


Unbinned shape limits using m_{lvJ} shape [SM and BSM limits]

CMS \sqrt{s} = 8 TeV dataset, 19 fb⁻¹ arbitrary units Triggers: single lepton triggers - thresholds at 24 (27) GeV for µ and e channels WW \rightarrow I (e,µ) + MET + J Physics Objects - particle flow inputs 50 150 100 pruned jet mass leptons: $pT(\mu,e) > 30$ (35) GeV; veto presence of 2nd μ or e missing transverse energy: $MET(\mu,e) > 50$ (70) GeV CMS Simulatio arbitrary units 21.0 jets: cluster with CA8, pruned jet mass = 65-105 GeV, cut on N-subjettiness (one-pass kT) $T_2/T_1 < 0.5$; Event selection: 0.1 pT_J and $pT_W > 200 \text{ GeV}$ 0.05 leptonic $mT_W > 30 \text{ GeV}$ Topological back-to-back angular cuts 0.2 0.6 0.8 0.4 Veto presence of b jets using CMS "standard" AK5 jets τ_2/τ_1

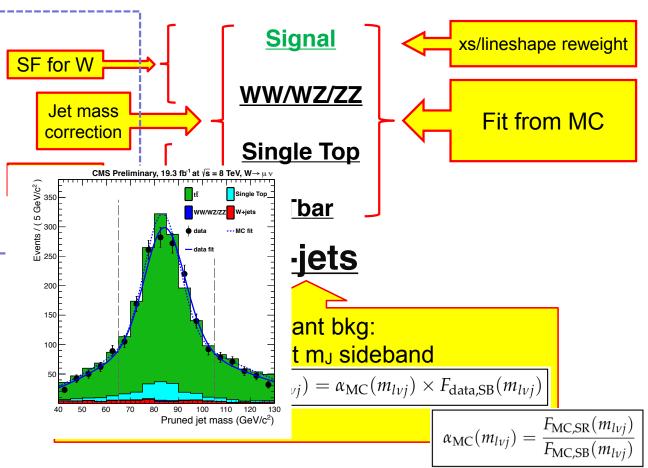
CMS Simulation

To whet the appetite...


We tried a number of jet substructure observables to determine which would give the best performance.

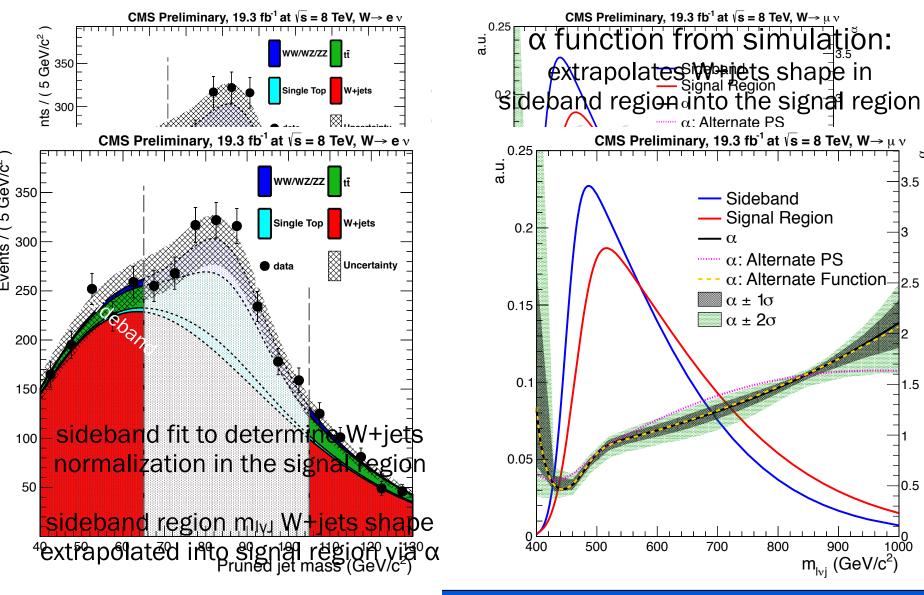
Includes MVA discriminants (8 variables) which show a small improvement in performance

See talk by E. Usai



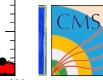
background estimation

see talk by P. Maksimovic for more details on scale factor extraction

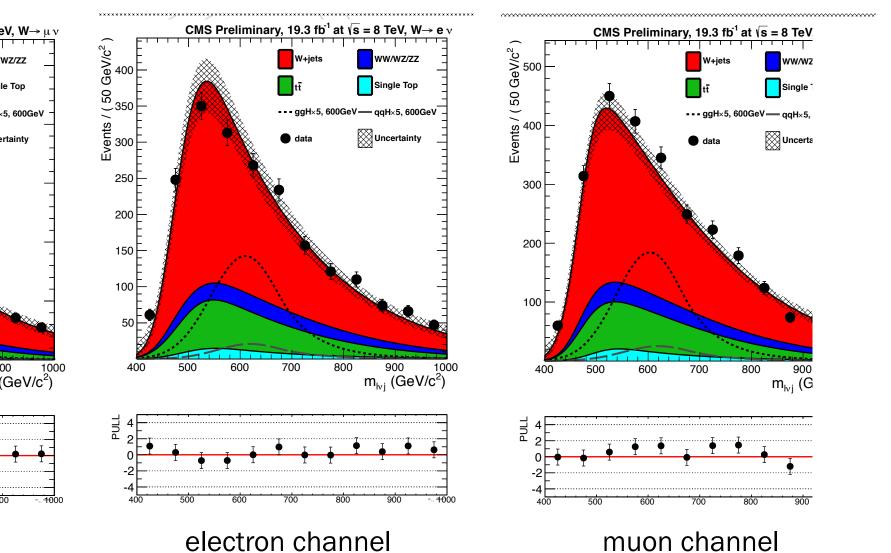

W + jets is dominant background (see next slides) top and W-jet scale factors are determined from topenriched control regions

Nhan Tran

B00ST 2013


BOOST 2013

ರ


final m_{IvJ} distributions

W+jets sideband Putting all together: α function Final m_{IVJ} distribution CMS Preliminary. 19.3 fb⁻¹ at $\sqrt{s} = 8$ TeV. W $\rightarrow u v$ CMS Preliminary, 19.3 fb⁻¹ at \sqrt{s} = 8 TeV, W \rightarrow e v Events / (50 GeV/c²) 00 05 Events / (5 GeV/c² N B in signal region WW/WZ/ZZ ww/wz/zz W+iets Single Top Single Top CMS Preliminary, 19.3 fb⁻¹ at $\sqrt{s} = 8$ TeV Uncertainty Uncertainty W+iets WW/WZ Single 200 150 • • • ggH×5, 600GeV — qqH×5, 150 Uncerta 100 100 50 50 600 700 800 900 1000 500 600 700 800 900 1000 400 500 400 m_{lvi} (GeV/c²) m_{lvi} (GeV/c²) CMS Preliminary, 19.3 fb⁻¹ at \sqrt{s} = 8 TeV, W \rightarrow e v CMS Preliminary, 19.3 fb⁻¹ at vs = 8 TeV Events / (50 GeV/c²) 00 00 ies œw₩+jetsѯshape.com ertair WW/WZ/ZZ 500 600 700 800 900 W + jets side band if it α junction fit shape unce and inty m_{lvi} (G Single Top • • ggH×5, 600GeV — ggH×5, 600GeV Uncertainty data Shape uncertainty from alternate pa ton shower 300 and alternate fitting functions 500 600 700 800 900 200 150 100

final m_{IvJ} distributions

900 1000 (GeV/c²)

50

40

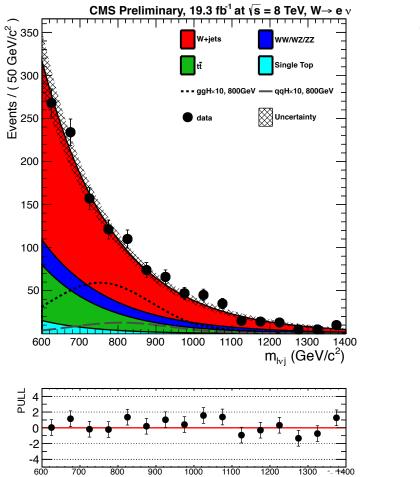
Events / (50 GeV/c² 00 00 00

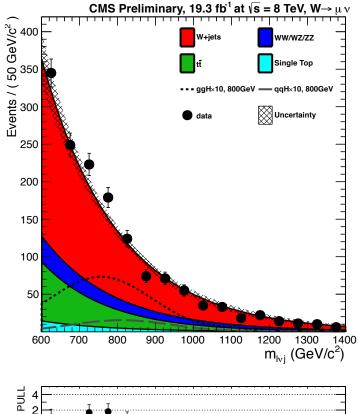
250

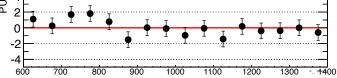
200

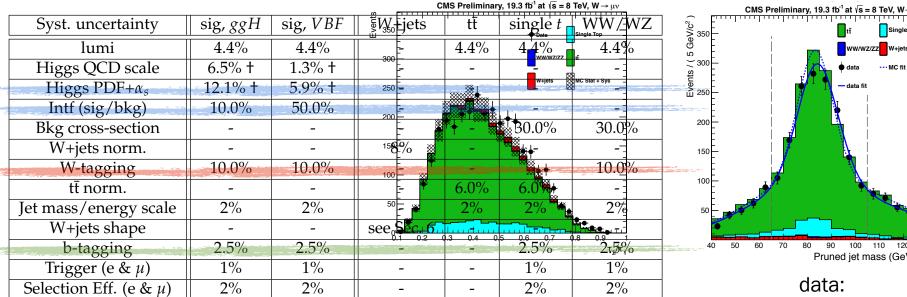
150

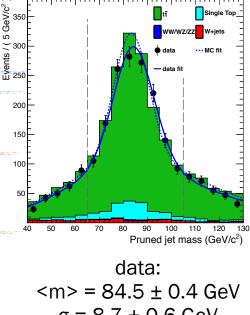
100


50


PULL

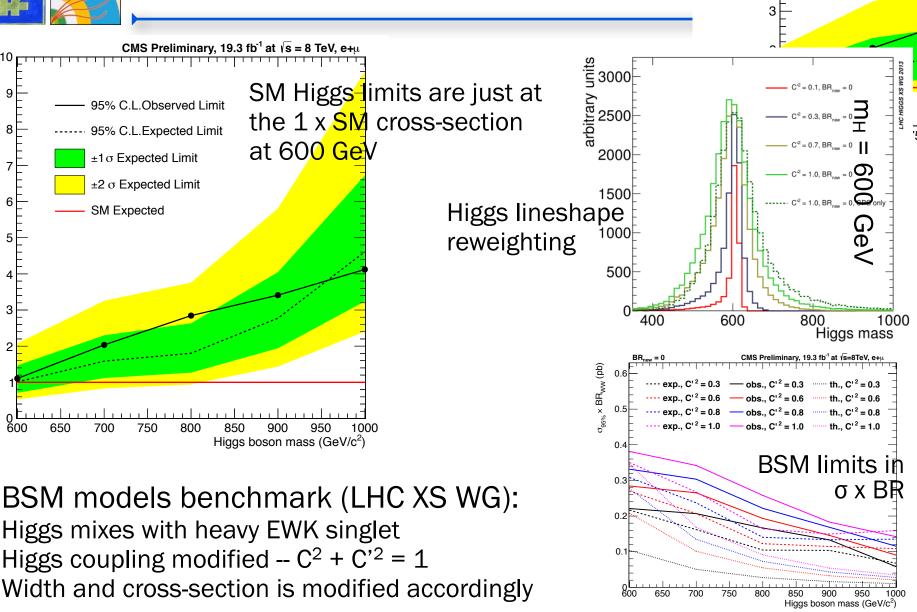

400




muon channel

electron channel

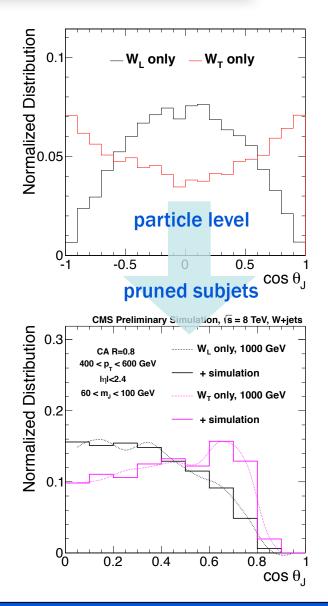
systematics



- W+jets shape is one of the larger systematics effects
- W-tagging scale factor estimated in the top-enriched control region to be 0.95 \pm 0.10 (0.89 \pm 0.10) for the μ (e) channel
- Signal uncertainties are dominated by theoretical uncertainties
 - PDF and α_s and interference effects -- standard within the LHCXSWG

 $\sigma = 8.7 \pm 0.6 \, \text{GeV}$ MC: <m> = 83.4 ± 0.4 GeV $\sigma = 7.4 + 0.4 \text{ GeV}$

95% CL limit on σ/σ_{SM}


future prospects and summary

future prospects

- Subjet b-tagging
 - Large improvements in Higgs tagging by b tagging subjets
 - See talk by I. Marchesini
- Advances in W-jets
 - No longer just bump hunting... angular analysis with substructure
 - Fractions of longitudinal and transversely polarized W's
 - W⁺ jets vs W⁻ jets vs. QCD jets (?)
 - See talk by E. Usai

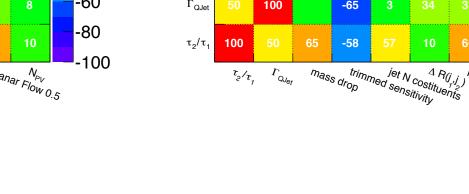
References CMS PASes: JME-13-006, BTV-13-001

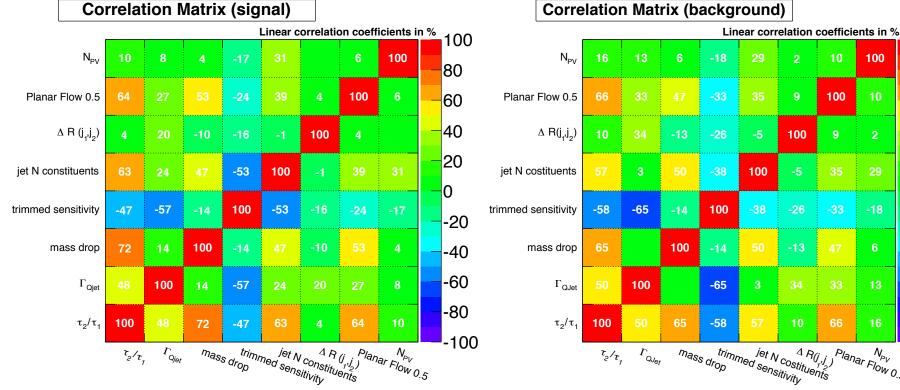
- Higgs searches with boosted topologies are presented
 - VH \rightarrow ff+bb search for SM Higgs boson
 - Observed (expected) limit of 1.85 (0.95) times the SM Higgs cross-section at 125 GeV
 - Consistent with a SM Higgs within errors
 - Substructure methods are studied, do not bring much sensitivity for LHC Run I
 - $H \rightarrow WW \rightarrow I + v + qq$ search for SM and BSM Higgs
 - High mass search including a fat jet tagged as a merged W
 - Limits are set on SM Higgs and also BSM models with modified width and cross-section
- Rich analyses, but this can just the beginning of the story for these modes...

additional material

Hbb selections

Variable	$W(\ell \nu)H$	$W(\tau\nu)H$	$Z(\ell\ell)H$	$Z(\nu\nu)H$
$m_{\ell\ell}$	_	_	[75 - 105]	_
$p_{\mathrm{T}}(j_1)$	> 30	> 30	> 20	> 60
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 20	> 30
$p_{\rm T}(jj)$	> 100	> 120	_	> 100 (> 130,> 130)
m(jj)	< 250	< 250	[40 - 250] (< 250)	< 250
$p_{\rm T}({\rm V})$	100 - 130 (130 - 180,> 180)	> 120	[50 - 100] (> 100)	_
CSV _{max}	> 0.40	> 0.40	> 0.50 (> 0.244)	> 0.679
CSV _{min}	> 0.40	> 0.40	> 0.244	> 0.244
N_{aj}	_	_	_	< 2 (-,-)
$N_{\rm al}$	= 0	= 0	_	= 0
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 45	> 80	_	[100 - 130] ($[130 - 170]$, > 170)
$\Delta \phi(\mathbf{V}, \mathbf{H})$	-	_	_	> 2.0
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet})$	_	_	_	> 0.7 (> 0.7, > 0.5)
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}(\mathrm{trks})})$	_	_	_	< 0.5
$E_{\rm T}^{\rm miss}$ significance	_	_	_	> 3 (-,-)
$\Delta \phi(\tilde{\mathrm{E}}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	$<\pi/2$		_	_
$p_T(\tau)$	_	> 40	_	_
$p_T(track)$	_	> 20	-	-




Hbb control regions

Variable	W+LF	tī	W+HF
$p_{\mathrm{T}}(j_1)$	> 30	> 30	> 30
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 30
$p_{\mathrm{T}}(\mathbf{jj})$	> 120	> 120	> 120
$p_{\rm T}({\rm V})$	[100 - 130] ([130, 180] > 180)	[100 - 130] ([130, 180] > 180)	[100 - 130] ([130, 180] > 180)
CSV _{max}	[0.244 - 0.898]	> 0.898	> 0.898
N_{aj}	< 2	> 1	= 0
$N_{\rm al}$	= 0	= 0	= 0
$E_{\rm T}^{\rm miss}$	> 45	> 45	> 45
$E_{\rm T}^{\rm miss}$ significance	$> 2.0(\mu) > 3.0(e)$	_	_
m(jj)	< 250	< 250	veto [90 – 150]

Variable	Z+jets	tī
$m_{\ell\ell}$	[75 - 105]	veto [75 – 105]
$p_{\mathrm{T}}(j_1)$	> 20	> 20
$p_{\mathrm{T}}(j_2)$	> 20	> 20
$p_{\mathrm{T}}(\mathrm{V})$	[50 - 100]	[50 - 100]
CSV _{max}	> 0.244	> 0.244
CSV _{min}	> 0.244	> 0.244
m(jj)	veto [80 – 150], < 250	veto [80 – 150], < 250

Variable	Z+LF	Z+HF	tī	W+LF	W+HF
$p_{\mathrm{T}}(j_1)$	> 60	> 60	> 60	> 60	> 60
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 30	> 30	> 30
$p_{\rm T}(jj)$	> 100 (> 130,> 130)	> 100 (> 130,> 130)	> 100 (> 130,> 130)	> 100 (> 130,> 130)	> 100 (> 130,> 130)
m(jj)	< 250	< 250, veto $[100 - 140]$	250, veto [100 - 140]	< 250	< 250, veto $[100 - 140]$
$p_{\rm T}({\rm V})$	-	_	_	-	_
CSV _{max}	[0.244 - 0.898]	> 0.679	> 0.898	[0.244 - 0.898]	> 0.679
CSV _{min}		> 0.244	_	_	> 0.244
N_{aj}	< 2 (-,-)	< 2 (-,-)	≥ 1	= 0	= 0
N _{al}	= 0	= 0	= 1	= 1	= 1
$E_{\rm T}^{\rm miss}$	[100 - 130] ($[130 - 170]$, > 170)	[100 - 130] ($[130 - 170]$, > 170)	[100 - 130] ($[130 - 170]$, > 170)	[100 - 130] ($[130 - 170]$, > 170)	[100 - 130] ($[130 - 170]$, > 170)
$\Delta \phi(\mathbf{V}, \mathbf{H})$	_	> 2.0	_	_	> 2.0
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet})$	> 0.7 (> 0.7,> 0.5)	> 0.7 (> 0.7,> 0.5)	> 0.7 (> 0.7,> 0.5)	> 0.7 (> 0.7,> 0.5)	> 0.7 (> 0.7,> 0.5)
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}(\mathrm{trks})})$	< 0.5	< 0.5	-	_	_
$E_{\rm T}^{\rm miss}$ significance	> 3 (-,-)	> 3 (-,-)	> 3 (-,-)	> 3 (-,-)	> 3 (-,-)

MVA correlations

100

80

60

40

20

0

-20

-40

-60

-80

-100

100

100

100

 $\frac{1}{4} R_{(j_i,j_i)}$

Planar Flow 0.5