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Motivation

� At high pT, heavy objects 
which decay hadronically are 
difficult to distinguish from 
background jets.

� The internal structure of a jet 
gives us useful tools for 
testing QCD and for 
searches for new physics.

� Several of these tools have 
been validated with 2011 
data, and many are currently 
being validated with data 
from 2012. ATLAS-PERF-2012-02

(arXiv:1306.4945)
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Why is JMS Important?
� Many exotic models predict 

heavy particles which decay to 
tops, Ws, and Zs

� Jet mass is a very good 
discriminating variable → need 
good handle on JMS!

� How can we measure it? Use 
ratio of track jet mass to calo jet 
mass.

� Inner detector and calorimeter 
have uncorrelated uncertainties 
→ probe detector modeling 
effects. 5-8% uncertainty

ATLAS-PERF-2012-02 (arXiv:1306.4945)
Recently accepted by JHEP
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2011 Results
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Validation of Jet Mass Scale

Mass distribution for jets with
pT > 200 GeV after µ+jets tt selection

(W → µν candidate and a b-tagged anti-k t 0.4 jet)

ATLAS-PERF-2012-02
(arXiv:1306.4945)

Filtered C/A 1.2; pT > 200 GeV Trimmed anti-kt 1.0; pT > 200 GeV
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Validation of Jet Mass Scale
ATLAS-PERF-2012-02 (arXiv:1306.4945)

Filtered C/A R = 1.2
Monte Carlo

Filtered C/A R = 1.2
Data

Fit signal (W jets) + background (after subtracting W+jets, multijet).
Extract mean W jet mass: µMC = 87.4 GeV, µdata = 86.9 GeV.
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Validation of Jet Mass Scale
ATLAS-PERF-2012-02 (arXiv:1306.4945)

Perform the same analysis in jet |η| bins
No significant discrepancy between data and MC for W jets

Filtered C/A R = 1.2 Filtered anti-kt R = 1.0
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2012 Results



BOOST 2013    Flagstaff, AZ Chris Pollard    Duke University 10

� 
tra

ck
 je

t
m  r�

2

2.5

3

3.5

4
ATLAS Preliminary

 LCW jets with R=1.0tanti-k
=0.3)sub=0.05, R

cut
Trimmed (f

| < 0.8d < 600 GeV, |
T
jet500 < p -1 L dt = 20.3 fb0 = 8 TeV, s

Data 2012
Pythia8 dijets
Herwig++ dijets

 Jet mass [GeV] 
0 100 200 300 400

� 
tra

ck
 je

t
m

 R� 0.9
1

1.1

Jet Mass Ratios
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013Jms

Jet mass

y-axis:

  average

JMS uncertainty determination:



BOOST 2013    Flagstaff, AZ Chris Pollard    Duke University 11

Jet Mass Ratios
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Why jet m/pT?
→ less susceptible to JES
→ each bin covers a

broad range of jet masses
and pTs.
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Jet Mass Ratios
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Substructure Studies
with Top Jets

� Q: Does MC model 
substructure variables 
well in an interesting 
use case--top jets?

� Q: How do 
substructure variables 
perform if not all 
decay products are 
contained? Does MC 
model this well?

2011 Data/MC comparison

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Substructure Studies
with Top Jets

� Q: Does MC model substructure 
variables well in an interesting use 
case--top jets?
� µ+jets decay channel with a b-

tagged jet to obtain a top-enriched 
sample

� Q: How do substructure variables 
perform if not all decay products are 
contained? Does MC model this 
well?
� Split MC events into two 

categories: with fully-contained 
and non-contained top jets

� Study substructure as a function 
of number of kt subjets

Event with a fully-contained top jet:
� All three daughters within ΔR < 1.0
 of truth top, before radiation
� Plots for highest pT jet, not
 necessarily the top jet
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µ+jets Event Selection

� One triggered muon with         
pT > 25 GeV, |η| < 2.5, and 
relative miniisolation < 0.05

� ET
miss + mW

T > 60 GeV

� One b-tagged anti-kt R = 0.4 jet 
within ΔR < 1.5 of the selected 
muon

� At least one trimmed anti-k t 
R=1.0 jet

- OR -
� At least one C/A R=1.5 jet which 

passes HEPTopTagger selection

� Both cases: pT > 200 GeV and   
|η| < 1.2

C/A R=1.5
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Jet Mass
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ATLAS-CONF-2013-084
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Jet Mass (nsubjets)

pT > 200 GeV

pT > 350 GeV
pT > 500 GeV

- nsubjets after trimming
- Expect distributions to be sensitive to
  fcut (0.05) and Rsub (0.3)
- Top jets with three subjets have
  clear peak at mt.
- At high pT even two-subjet jets peak at mt.

ATLAS-CONF-2013-084
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Jet Mass (nsubjets)

nsubjets = 2

nsubjets = 1

nsubjets = 3

- Nice peak at top mass in 3 subjet bin and
  at W mass in 2 subjet bin.
- Backgrounds mostly in 1 subjet bin.
- Recall: JMS uncertainty 4-5%

ATLAS-CONF-2013-084 All plots: pT > 350 GeV
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kt Splitting Scales
� kt splitting scales are 

determined by reclustering 
jet constituents using the kt 
algorithm

�

� Subjets in the last step of 
clustering correspond to 
d12, those in the second-to-
last to d23, etc.

� d12 ~ (m/2)2

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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kt Splitting Scales

Only fully contained top events

mt/2

mW/2

�d12

�d 23
�d 23

�d12

ATLAS-CONF-2013-084
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N-subjettiness
� N-subjettiness (τN) 

corresponds to how well a 
jet can be described as 
containing N or fewer kT 
subjets.

� Ratios (τN/τM) are denoted 
τNM.

� Ratios particularly useful 
for QCD discrimination

ATLAS-PERF-2012-02
(arXiv:1306.4945)

(β=1)
3 subjet-like
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N-subjettiness

2 subjet-like

3 subjet-like

τ21τ21

τ32

τ32

ATLAS-CONF-2013-084

Only fully contained top events
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HEPTopTagger
- HTT algorithm identifies the hard substructure of a
  C/A jet and tests it for compatibility with top decay pattern.
- C/A R=1.5 jets with pT > 200 GeV
- 3 main steps in procedure:

1) Undo C/A clustering until  
mi < mcut or no clustering 
history (substructure objects)

2) Test combinations of 3 
substructure objects for 
compatibility with a 
hadronic top quark decay

3) Apply kinematic cuts, 
e.g. W-mass window cut.

ATLAS-CONF-2013-084
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HEPTopTagger

m23/m123

arctan(m13/m12)

C/A R=1.5 jets with pT > 200 GeV
after W→µν preselection and
default HEPTopTagger criteriamW/mt

98%
purity

~4000
tops!

ATLAS-CONF-2013-084
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Top Tagger Comparison
� We studied top jet efficiency vs rejection for a variety of top “taggers.”

� Cuts on jet mass, kt-splitting scales, N-subjettiness

� HEPTopTagger
� Preselection:

� Truth-level C/A R=1.2 jet and anti-k t R=1.0 jet with pT > 150 GeV and       
|η| < 1.2

� Corresponding ΔR-matched reconstructed C/A and anti-k t jets with         
pT > 550 GeV

� Reconstructed C/A and anti-kt jets within ΔR < 0.75

� Signal jets from 1.75 TeV Z' → tt

� Background jets from dijet with leading anti-kt 0.6 jet 500 < pT < 1000 GeV

� Efficiency/rejection curves derived on a jet-by-jet basis, not event-by-event.

� HTT not optimized for C/A 1.2 jets and p T > 550 GeV!
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Top Tagger Comparison

ATLAS-CONF-2013-084
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Top Taggers
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Top Tagger Comparison
HEP Top Tagger

ATLAS-CONF-2013-084
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Top Tagger Comparison

Used in current
l+jets resonance

search

ATLAS-CONF-2013-084
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Top Tagger Comparison

Used in current
l+jets resonance

search

HEP Top Tagger

We have a wide variety of taggers available for different analyses!

ATLAS-CONF-2013-084
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Conclusion and Outlook
� Jet mass, kt splitting scales, and N-subjettiness have 

been studied on the full 2012 ATLAS dataset.
� There is good agreement between data and MC in a 

sample enriched in top quarks from the 2012 data.
� These substructure variables have been incorporated 

into current analyses, and new variables are being 
studied and validated!

� We have derived detailed systematic uncertainties 
using different techniques and commissioned these 
techniques for physics.



BOOST 2013    Flagstaff, AZ Chris Pollard    Duke University 32

Thank You
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Backup Slides
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Mass-drop filtering: step 1

� Undo last stage of 
C/A clustering and 
order subjets by mass

� Require:
�

�

� Discard jet otherwise

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Mass-drop Filtering: step 2

� j1 and j2 are reclustered using the C/A algorithm with 
radius parameter 

� All but the three hardest subjets are discarded.
� This allows for a two-body decay + radiation in the jet

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Trimming

� Recluster the jet using the kt algorithm with R 
parameter Rsub.

� Any subjet whose pT is less than fcut times the 
jet's total pT is removed.

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Jet Grooming

Clear Z peak!
One quark removed

by grooming

Z → qq filtering efficiency: 55%

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Jet Mass
Data/MC Comparison

Trimming

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Jet Mass
Data/MC Comparison

Filtering

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Splitting Scale        
Data/MC Comparison

�d12

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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N-subjettiness
Data/MC Comparison

ATLAS-PERF-2012-02
(arXiv:1306.4945)
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Jet pT Spectrum
ATLAS-CONF-2013-084
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Jet Mass (<µ> and NPV)

Response fairly flat in both <µ> and NPV
Data and MC in ~good agreement

ATLAS-CONF-2013-084
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Jet Mass (nsubjets)

nsubjets = 2

nsubjets = 1

nsubjets = 3

ATLAS-CONF-2013-084

All plots: pT > 500 GeV
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N-subjettiness

τ1 τ2

τ3

ATLAS-CONF-2013-084
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nsubjets

pT > 350 GeV pT > 500 GeV

ATLAS-CONF-2013-084
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HEP Top Tagger
ATLAS-PERF-2012-02

(arXiv:1306.4945)
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Jet Mass (<µ> and NPV)
HEPTopTagger

Response fairly flat in both <µ> and NPV
Data and MC in ~good agreement

ATLAS-CONF-2013-084
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Top Taggers
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