Substructure Performance in Boosted Objects at ATLAS

Chris Pollard On behalf of the ATLAS Collaboration

BOOST 2013 Flagstaff, AZ

Outline

- Motivation
- Jet mass scale validation
- Substructure studies with top jets
 - Jet mass
 - k_t splitting scales
 - N-subjettiness
 - HEPTopTagger
- Conclusions and outlook

Motivation

- At high p_T, heavy objects which decay hadronically are difficult to distinguish from background jets.
- The internal structure of a jet gives us useful tools for testing QCD and for searches for new physics.
- Several of these tools have been validated with 2011 data, and many are currently being validated with data from 2012.

Why is JMS Important?

- Many exotic models predict heavy particles which decay to tops, Ws, and Zs
- Jet mass is a very good discriminating variable → need good handle on JMS!
- How can we measure it? Use ratio of track jet mass to calo jet mass.
- Inner detector and calorimeter have uncorrelated uncertainties → probe detector modeling effects.

ATLAS-PERF-2012-02 (arXiv:1306.4945) Recently accepted by JHEP

2011 Results

Validation of Jet Mass ScaleFiltered C/A 1.2; $p_T > 200 \text{ GeV}$ Trimmed anti- $k_t 1.0; p_T > 200 \text{ GeV}$ 10004TLAS0 Data 20110 WW0 Data 201110004TLAS0 Data 20110 WW0 WW

Mass distribution for jets with $p_T > 200 \text{ GeV}$ after μ +jets tt selection (W $\rightarrow \mu \nu$ candidate and a b-tagged anti-k, 0.4 jet)

Validation of Jet Mass Scale

ATLAS-PERF-2012-02 (arXiv:1306.4945)

 $OST 2012 \quad Elements ff A 7 \qquad Chris Pollard Du$

Validation of Jet Mass Scale

ATLAS-PERF-2012-02 (arXiv:1306.4945)

Perform the same analysis in jet $|\eta|$ bins No significant discrepancy between data and MC for W jets

BOOST 2013 Flagstaff, AZ

Chris Pollard Duke University

2012 Results

Jet Mass Ratios

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013Jms

Jet Mass Ratios

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013Jms

Jet Mass Ratios

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013Jms

Substructure Studies with Top Jets

- Q: Does MC model substructure variables well in an interesting use case--top jets?
- Q: How do substructure variables perform if not all decay products are contained? Does MC model this well?

Substructure Studies with Top Jets

- Q: Does MC model substructure variables well in an interesting use case--top jets?
 - µ+jets decay channel with a btagged jet to obtain a top-enriched sample
- Q: How do substructure variables perform if not all decay products are contained? Does MC model this well?
 - Split MC events into two categories: with fully-contained and non-contained top jets
 - Study substructure as a function of number of k_t subjets

Event with a fully-contained top jet:

- All three daughters within $\Delta R < 1.0$ of truth top, before radiation
- Plots for highest p_T jet, not necessarily the top jet

µ+jets Event Selection

- One triggered muon with $p_T > 25$ GeV, $|\eta| < 2.5$, and relative miniisolation < 0.05
- $E_T^{miss} + m_T^W > 60 \text{ GeV}$
- One b-tagged anti- $k_t R = 0.4$ jet within $\Delta R < 1.5$ of the selected muon

At least one trimmed anti-k_t
 R=1.0 jet

- OR -

- At least one C/A R=1.5 jet which passes HEPTopTagger selection
- Both cases: p_T > 200 GeV and |η| < 1.2

Jet Mass

ATLAS-CONF-2013-084

Jet Mass (n_{subjets})

Jet Mass (n_{subjets})

BOOST 2013 Flagstaff, AZ

k_t Splitting Scales

- k_t splitting scales are determined by reclustering jet constituents using the k_t algorithm
- $\sqrt{d_{ij}} = \min(p_{\mathrm{T}i}, p_{\mathrm{T}j}) \times \Delta R_{ij}$
- Subjets in the last step of clustering correspond to d₁₂, those in the second-to-last to d₂₃, etc.

•
$$d_{12} \sim (m/2)^2$$

k_t Splitting Scales

ATLAS-CONF-2013-084

N-subjettiness

- N-subjettiness (τ_N) corresponds to how well a jet can be described as containing N or fewer k_T subjets.
- Ratios $(\tau_N^{}/\tau_M^{})$ are denoted $\tau_{_{NM}}^{}$.
- Ratios particularly useful for QCD discrimination

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{\mathrm{T}k} \times \min(\Delta R_{1k}, \Delta R_{2k}, ..., \Delta R_{Nk})$$
$$d_{0} \equiv \sum_{k} p_{\mathrm{T}k} \times R \quad (\beta=1)$$

N-subjettiness

ATLAS-CONF-2013-084

HEPTopTagger

- HTT algorithm identifies the hard substructure of a C/A jet and tests it for compatibility with top decay pattern.
- C/A R=1.5 jets with p_{T} > 200 GeV
- 3 main steps in procedure:

1) Undo C/A clustering until m_i < m_{cut} or no clustering history (substructure objects) 2) Test combinations of 3 substructure objects for compatibility with a hadronic top quark decay

3) Apply kinematic cuts, e.g. W-mass window cut.

ATLAS-CON	VF-2013-084
-----------	-------------

parameter	default value	tight	loose
m _{cut}	50 GeV	30 GeV	70 GeV
$R_{\rm filt}^{\rm max}$	0.3	0.2	0.5
$N_{\rm filt}$	5	4	7
f_W	±15%	±10%	±20%

HEPTopTagger

- We studied top jet efficiency vs rejection for a variety of top "taggers."
 - Cuts on jet mass, k_t-splitting scales, N-subjettiness
 - HEPTopTagger
- Preselection:
 - Truth-level C/A R=1.2 jet and anti-k $_{\rm t}$ R=1.0 jet with $p_{\rm T}$ > 150 GeV and $|\eta|$ < 1.2
 - Corresponding ΔR -matched reconstructed C/A and anti-k_t jets with $p_{\tau} > 550 \text{ GeV}$
 - Reconstructed C/A and anti- k_{+} jets within $\Delta R < 0.75$
- Signal jets from 1.75 TeV Z' \rightarrow tt
- Background jets from dijet with leading anti- k_{t} 0.6 jet 500 < p_{T} < 1000 GeV
- Efficiency/rejection curves derived on a jet-by-jet basis, **not** event-by-event.
- HTT not optimized for C/A 1.2 jets and $p_{T} > 550 \text{ GeV}!$

Top Taggers

- substructure tagger I: $\sqrt{d_{12}} > 40 \text{ GeV}$
- substructure tagger II: trimmed anti- $k_t R = 1.0 \text{ mass } m^{\text{jet}} > 100 \text{ GeV}$
- substructure tagger III: $m^{\text{jet}} > 100 \text{ GeV}, \sqrt{d_{12}} > 40 \text{ GeV}.$
- substructure tagger IV: $m^{\text{jet}} > 100 \text{ GeV}$, $\sqrt{d_{12}} > 40 \text{ GeV}$, $\sqrt{d_{23}} > 10 \text{ GeV}$
- substructure tagger V: $m^{\text{jet}} > 100 \text{ GeV}, \sqrt{d_{12}} > 40 \text{ GeV}, \sqrt{d_{23}} > 20 \text{ GeV}$
- substructure tagger VI: $\sqrt{d_{12}} > 40$ GeV, $0.4 < \tau_{21} < 0.9$, $\tau_{32} < 0.65$

BOOST 2013 Flagstaff, AZ

Chris Pollard Duke University

Conclusion and Outlook

- Jet mass, k_t splitting scales, and N-subjettiness have been studied on the full 2012 ATLAS dataset.
- There is good agreement between data and MC in a sample enriched in top quarks from the 2012 data.
- These substructure variables have been incorporated into current analyses, and new variables are being studied and validated!
- We have derived detailed systematic uncertainties using different techniques and commissioned these techniques for physics.

Thank You

Backup Slides

Mass-drop filtering: step 1

ATLAS-PERF-2012-02 (arXiv:1306.4945)

- Undo last stage of C/A clustering and order subjets by mass
- Require:
 - $m^{j_1}/m^{\text{jet}} < \mu_{\text{frac}}$

•
$$\frac{\min[(p_{\mathrm{T}}^{j_1})^2, (p_{\mathrm{T}}^{j_2})^2]}{(m^{\mathrm{jet}})^2} \times \Delta R_{j_1, j_2}^2 > y_{\mathrm{cut}}$$

Discard jet otherwise

Mass-drop Filtering: step 2

ATLAS-PERF-2012-02 (arXiv:1306.4945)

 j₁ and j₂ are reclustered using the C/A algorithm with radius parameter

 $R_{\rm filt} = \min[0.3, \Delta R_{j_1, j_2}/2]$

- All but the three hardest subjets are discarded.
- This allows for a two-body decay + radiation in the jet

- Recluster the jet using the k_t algorithm with R parameter $R_{\mbox{\tiny sub}}$
- Any subjet whose p_{τ} is less than f_{cut} times the jet's total p_{τ} is removed.

Jet Grooming

Jet Mass Data/MC Comparison

Jet Mass Data/MC Comparison

Splitting Scale $\sqrt{d_{12}}$ Data/MC Comparison

N-subjettiness Data/MC Comparison

Jet p_{T} Spectrum

ATLAS-CONF-2013-084

Jet Mass (<µ> and NPV)

ATLAS-CONF-2013-084

Response fairly flat in both <µ> and NPV Data and MC in ~good agreement

N-subjettiness

ATLAS-CONF-2013-084

BOOST 2013 Flagstaff, AZ

Chris Pollard Duke University

N subjets ATLAS-CONF-2013-084

HEP Top Tagger **ATLAS-PERF-2012-02** (arXiv:1306.4945) 13 J_2 C/A 0 0 0 C/A substructure $m_i \leq m_{\rm cut}$ 0 Ο 0 objects 0 j_i °0 or 100 no clustering history $m^{j_2}/m^{j_2^*} < \mu_{\mathrm{frac}}$ Initial jet $m^{j_1}/m^{ m jet} < \mu_{ m frac}$ substructure objects C 0 Top candidate \cap Make exactly three Keep the hardest N(=5) subjets jets 00 00 00 00 00 60 00 C/A R= R_{filt} 0 0 0 0 00 \bigcirc $(a, b = j_1, j_2, j_3)$ $m_{ab} = m_W (1 \pm 0.15)$ $R_{\text{filt}} = \min[0.3, \frac{\Delta R_{j_1, j_2}}{2}, \frac{\Delta R_{j_1, j_3}}{2}, \frac{\Delta R_{j_2, j_3}}{2}]$

Jet Mass (<µ> and NPV) HEPTopTagger

ATLAS-CONF-2013-084

Response fairly flat in both <µ> and NPV Data and MC in ~good agreement

leading jet p_{τ} [GeV]

0└─