Jet Substructure by Accident

by Hou Keong (Tim) Lou Princeton University

In collaboration with Timothy Cohen, Eder Izaguirre and Mariangela Lisanti (arXiv: 1212.1456)

New Physics in Multijets

- Natural SUSY \rightarrow light stops \rightarrow multitops/multijets
- New physics could be hiding in multi-jets
- Need robust multijet search techniques

Jet Substructure

- Boosted particle can decay into collimated final states
 - Size $R \sim m/|ec{p}|$
 - Cluster into a single fat-jet
- Boosted particles decay \rightarrow jet substructure

Can we use substructure for non-boosted particles?

Accidental Substructure

- Substructure without "boost"?
- Multiple quarks get clustered together by accident

Accidental Substructure

- Idea not new:
 - Event Shapes
 - N-jettiness (Stewart et. al.)
- Multi-jet = multiple interpretations
- Optimization:
 - Background control
 - Signal discrimination

Multijet challenges

- Modeling ≥ 8 jets challenging:
 - matrix elements
 - matching
- Need data-driven method
- Jet_{N+1} / Jet_N = ? (E. Gerwick et. al. arXiv:1208.3676)
- Alternatives?

Fat-Jets

- Factorize phase space
- Fix 4 Fat-jets
- Anomalies in substructures
- Data-Driven background
- QCD = MC \otimes Data Driven
 - Kinematics: MC
 - Substructure: Data Driven

•
$$P_{4\text{-jets}} = P_{\text{jet1}} \bullet P_{\text{jet2}} \bullet P_{\text{jet3}} \bullet P_{\text{jet3}}$$

Case Study

- SUSY \widetilde{g} pair production
- \widetilde{g} or $\widetilde{\chi}_0$ decay through RPV $U^c D^c D^c$ term
- No (suppressed) Missing E_T

8

Monte Carlo Modeling

• QCD

- Sherpa event generation and showering
- $p p \rightarrow$ up to 6 partons
- tree-level matrix elements, matched
- 400 million events
- Signal
 - Madgraph/Pythia for event generation
 - Pythia for parton showering
 - 50 thousand events/mass point
- Analysis
 - Fastjet-3 for jet clustering
 - Simplified detector mockup

Skinny-Jets at colliders

- Jet clustering: anti- k_T algorithm
- Small radius (R=0.4)

Skinny-Jets at colliders

- Jet clustering: anti- k_T algorithm
- Small radius (R=0.4)

Fat-Jets at colliders

- Jet clustering: anti- k_T algorithm
- Big radius (R=1.2)

Accidental Substructure

- N-subjettiness, τ_{mn} (J. Thaler et al.)
- Event-subjettiness $T_{mn} = \left(\prod_{j=1}^{4} \tau_{mn,j}\right)^{\frac{1}{4}}$
 - $T_{43} \ll 1$ for signal

Event with small T_{43}

$$\widetilde{g} \to t\,\overline{t} + 3\,j$$

- Demand 4 jets > 50 GeV:
 - 1st jet > 100 GeV
 - trimmed with $R_{sub} = 0.3$, $f_{cut} = 0.05$
- Jet mass:
 - QCD $m_j^2 \approx \alpha_s p_T^2 R^2$
 - Multijet new physics • $m_j^2 \approx p_T^2 R^2$
- Define Total Jet Mass (Hook et. al.)

$$M_J = \sum_{j=1}^4 m_j$$

• $M_J > 500$

➤ keep

 M_{J} (GeV)

 $\rightarrow t \, \bar{t} + 3 \, j$

• Event-subjettiness: $T_{43} < 0.6$

 $\tilde{q} \to t \, \bar{t} + 3 \, j$

• Event-subjettiness ($T_{43} < 0.6$) improves limits by 350 GeV

 $\widetilde{g} \to 3 j$

- Same cut as before except $T_{21} < 0.2$
- Competitive with ATLAS's skinny-jet result (in green)
- Our method is viable and competitive

Conclusion

- New Physics could be hiding in Multijets
- Need for robust data-driven technique
- Accidental Substructure in Multijet
- Accidental Substructure is competitive with simple jet counting

Future directions

- Data-driven background
- Other substructure variables
 - Energy correlation? (Larkoski et. al.)
- Multivariate optimization
- Detector effects, underlying events and pileup

Thank You!

Questions?

Back up Slides

τ_{43} Plots

Data-Driven Substructure

- Build template densities $\rho(\tau_{21}, p_T)$ from dijet sample
- Obtain $p_{T,j}$ from MC, and τ_{21} from template densities assuming:
 - $\rho(\tau_{21,1}, \tau_{21,2}, \tau_{21,3}, \tau_{21,4}) = \rho(\tau_{21,1}) \cdot \rho(\tau_{21,2}) \cdot \rho(\tau_{21,3}) \cdot \rho(\tau_{21,4})$
- If correlation between jets are small, we may be able to apply a perturbative expansion
- Potential problems:
 - Correlations may be large
 - How to parameterize quark vs. gluon mixture?
 - How to quantify systematics?

Exclusion statistics

- To compute the excluded cross-section:
 - 1. For a given set of cuts, and a given luminosity $\int Ldt$ we obtain *B* and the sign cut efficiency ϵ_{cut} from MC
 - 2. We compute the probability of observing at most *B* events given a background distribution around μ events

$$\operatorname{Prob}(N \le B|\mu) = e^{\mu} \sum_{N=0}^{B} \frac{\mu^{N}}{N!}$$

3. To take systematic uncertainty ($\epsilon_{SYS} = 20\%$) into account, we take the test statistics to be

$$\text{p-value} = \int_0^\infty dy \, \operatorname{Prob}(N \le B | S_{\text{exc}} + y) \frac{1}{y\sqrt{2\pi\epsilon_{\text{sys}}}} \exp\left[-\frac{(\ln y - \ln B)^2}{2\epsilon_{\text{sys}}}\right]$$

4. For a given *B*, we solve for S_{exc} for p-value=0.05 (95% exclusion)

$$\sigma_{\rm exc} = \frac{S_{\rm exc}}{\epsilon_{\rm cut} \times \int L dt}$$

Jet clustering

Sequential clustering:

- mesons and baryons are clustered into "pseudojet" sequentially
- Algoirthm terminates and pseudojets are turned into jets
- Controlled by two functions
 - d_{ij} the pseudojet-pseudojet distance for each pair of pseudojet
 - d_{iB} the pseudojet-beam distance for each pseudojet
- Algorithm
 - 1. Compute min $\{d_{ij}, d_{iB}\}$
 - a) If minimum is d_{ij} , cluster pseudojet ij, replace them by their sum
 - b) If minimum is d_{iB} , promote pseuojet j to jet and remove it from clustering
 - 2. Repeat until no more pseudojets are jet

• anti- k_T algorithm: $d_{ij} = \min\{p_{T,i}^{-2}, p_{T,j}^{-2}\}\frac{\Delta R_{ij}^2}{R^2}$ and $d_{iB} = p_{T,i}^{-2}$

Natural SUSY

 Higgs mass fine-tuning comes from quadratic divergences from stop (Papucci et al.)

- Fine tuning $\Delta \sim |\delta m_h^2|/m_h^2$
- Constrains stop mass
- Gluino correction comes in two loop level

N-subjettiness

• First we define (first considered by Thaler et. al.)

$$\tau_n = \frac{1}{d} \sum_{i \in \text{jet}} p_{T,i}^2 \min_{n-\text{axes}} \{ \Delta R_{i1}^2, \cdots, \Delta R_{in}^2 \} \quad d = \sum_{i \in \text{jet}} p_{T,i}^2$$

- Summation is over the constituents of a jet
- Minimization done over all choices of *n*-axes, τ_n computes a jet's deviation from having exactly *n*-constituents
- Then define $au_{mn}:= au_m/ au_n$
 - a jet with *m*-subjet will have small au_m
 - a jet with more than *n*-subjet will have $\tau_n \approx 1$
 - for example a small au_{43} indicates that a jet likely has 4 subjets