

Semiclassical approach to jet clustering and background subtraction

Jeff Tseng in collaboration with Hannah Evans, Jesse Liu, and Hongbin Chen 13 August 2013

5th International Joint Theory/Experiment Workshop on

BOOSTED OBJECT PHENOMENOLOGY,

RECONSTRUCTION & SEARCHES

IN HIGH ENERGY COLLISION EXPERIMENTS

Motivation / Outline

- Work grew out of trying myself to learn more about jet clustering
 - In particular, non-deterministic methods like Qjets
 - Different ways to turn probabilities into jets
- ScJet arose from thinking about classical radiation
- "ScSubJet": reformulated for higher pileup levels
- Compare with existing techniques in highly idealized (nearly toy) simulation tests
- "We don't need theorists to convince experimentalists to do stupid things" - J Thaler, 12 Aug 2013
 - How naive can one be and still end up with jets?

arXiv:1304.1025 PRD 88, 014044 (2013)

- Sequential recombination algorithm
- Inter-cluster distance

$$d_{ij} = \frac{1}{4} (m_{Ti} + m_{Tj})^2 \left(\frac{\Delta R_{ij}}{R}\right)^3$$

$$m_{Ti}^2 = m_i^2 + p_{Ti}^2$$
$$\Delta R_{ij}^2 = \Delta \varphi_{ij}^2 + \Delta y_{ij}^2$$

 $-R = \text{maximum } \Delta R_{ii}$ for merging

- Beam-cluster distance $d_{iB} = m_{Ti}^2$
- Merge clusters by adding 4-momenta

Simulation tests

- Pythia 8.176 generation, 8 or 14 TeV cm energy
 - W+jet, $p_{\tau} > 500 \text{ GeV}$
 - Minbias pileup with Tune 4Cx
- Toy "detector"
 - Cluster particles into $0.1x0.1 \Delta \phi x \Delta \eta$ towers
 - Remove v and charged particles $p_{\tau} < 0.4 \text{ GeV}$
- Fastjet 3.0.4 for clustering, grooming
 - ScJet 1.1.0 plugin available from Fastjet contrib website http://fastjet.hepforge.org/contrib/ (fjcontrib ≥ 1.005)

Comparison

• Ungroomed jet clustering:

 $- \boldsymbol{k}_{\tau}$

- Cambridge-Aachen
- Anti- k_{τ}
- 0 and 25 average pileup

ScJet and pruning

ScJet eliminates clusters while clustering

- Not surprising if there is some similar behavior
- Jet area identically zero

Stability vs jet size

- W peak mass variation with R
- ScJet appears to level off with larger R

Stability vs jet size (2)

- More noticeable difference at higher pileup
 - Average 25 ~ current LHC

Comparison with grooming

- Pruning

 - $z_{cut} = 0.1$ $D_{cut} = 0.2$
- Trimming
 - $-R_{filt}=0.3$
 - $f_{sub} = 0.05$

- Appears to be quite stable

Grooming with pileup

Stability vs pileup

• W peak mass vs pileup level, *R*=1

• Again, ScJet stability ~ grooming

Stability vs pileup (2)

• With very fat jets, *R*=1.5

- ScJet and CA trimming appear most stable in this $\boldsymbol{\mu}$ range
- At this point, it would be interesting to apply to LHC data
 - At the same time, look at some related issues

High luminosity

- Extend to HL-LHC pileup levels
 - Phase 1: ~25
 - Phase 1.5: 55-80
 - Phase 2: 140 (levelled)

- All grooming techniques rise similarly
 - Need to tune for beam conditions often subtract pileup
 - ScJet only has R, and zero jet area

Tuning ScJet

- Consider probabilities again: compare signal vs background
 - Signal: emission at some angle θ
 - Background: cell/cluster with some p_{τ}
 - Larger $\mu \rightarrow \text{higher } p_{\tau}$
- d_{iB} : "beam-jet" distance, compare with inter-jet distance
 - Actually used in inclusive algorithms to limit ΔR_{ii} of mergings
 - Can it reflect an actual distance to compare with d_{ii} ?
- > Introduce a pileup scale to d_{iB}

Tuning ScJet (2)

Cell p_{τ} 's for 1 minbias

• Integrate with $F(p_{\tau})=1$, flip

$$d_{iB} = \left(1 + \frac{p_{Ti}}{k_{scale}\rho(\mu)}\right)^{1-r}$$

- k_{scale} = scaling factor for ρ
- Clustering reduces *r*
- Take r = 5 and $\rho(\mu)$
- With data, could use different d_{iB} for different background shape

"ScSubJet"

• Compare with probability of emission with angle > θ

$$d_{ij} = 1 + \gamma_{ij}^{2} \left(\frac{\Delta R_{ij}}{R_{sc}} \right)^{2} \qquad \gamma_{ij}^{2} = 1 + \frac{|\vec{p}_{Ti} + \vec{p}_{Tj}|^{2}}{m_{ij}^{2}}$$

- Note that R_{sc} is no longer maximum ΔR_{ii}
 - Tends to cluster everything that isn't identified as background
 - Introduce a termination condition, or use to recluster (groom) an existing jet

ScSubJet comparisons

- Start with anti- k_{τ} jets with R=1
- Take R_{sc}=0.2, k_{scale}=1.5
- Look at W's with $p_{\tau} > 500 \text{ GeV}$
- Also consider $p_{\tau} > 160 \text{ GeV}$
 - 90% have daughter $\Delta R < 1$

- We don't know scale of new physics or signature
- Try to compare with good grooming parameters at different pileup and p_{τ} ranges
 - Caveat: precision suitable for illustration only still only simulation

13 August 2013

W p_{τ} > 160 GeV, no pileup

W p_{τ} > 160 GeV, 150 pileup

Parameter selection

- Choose parameters with high yield, low Δm
 - Δm : peak mass drift from pileup $\mu \rightarrow \mu/2$
- Good parameters for both $\mu\text{=}50$ and $\mu\text{=}200$
- Trimming: $R_{filt} = 0.15$ $f_{sub} = 0.04$

• ScSubJet: $R_{sc} = 0.2$ $k_{scale} = 1.5$

Comparison with parameters

W p_{τ} > 500 GeV, 200 pileup

Comparison with parameters (2)

pileup

- Trimming W peak still drifts upwards, but overall slightly more efficient
- ScSubJet peak descends slightly
 - Possibly overshot restoring stability via d_{iB} : still room for tuning $\rho(\mu)$ and d_{iB}
- Concern: p_{τ} -dependent W mass
 - Smears peak \rightarrow more background for subsequent tagging
 - Not like pileup level, over which physicists have some control

Top quarks

 $Z' \rightarrow t \overline{t}, m = 2 TeV$

- Initial tests using selected parameters from W:
 - Similar shape to other groomed distributions
 - Similar patterns in peak mass, width

100

150

200

50

50

250 m_{iet} [GeV/c²]

Conclusion

- ScJet clusters and grooms simultaneously
 - Even for reclustering, peak mass drifts, but fewer handles to turn
- ScSubJet incorporates pileup-dependent p_{τ} scale into d_{iB}
 - Rough "tuning" is more stable in W peak mass than best trimming
 - Slightly lower yield and wider peak in Pythia8 MC
 - Current background model has room for improvement
 - Starting to look at whether ScSubJet approach can help improve top tagging and other jet observables
- There may be some mileage in reexamining distance measures in jet clustering algorithms
 - Considering background model appears to have some benefit
 - ScSubJet for reclustering can be seen as another form of pruning, with performance which can be tuned to be comparable to that of trimming

Backup

Grooming without pileup

High luminosity, fat jets

Comparison with parameters (3)

• W $p_{\tau} > 160$ GeV, pileup 200