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Herschel Space Observatory 

 ESA-NASA far-infrared astrophysics observatory, launched 2009 
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Herschel PACS + SPIRE far-infrared mosaic of Carina Nebula / Preibisch et al., ESA 

Carina Nebula in the far-IR: cool dust 



17 

HST ACS visible mosaic of Carina Nebula / Smith et al., NASA, ESA 
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Hubble Space Telescope 

NASA-ESA UV-optical-near-IR astrophysical observatory, launched 1990, last servicing May 2009 
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Epoch of reionisation 

"   Following the Big Bang, the Universe was fully ionised and opaque 
"   After cooling, recombination occurred, leading to CMB 

"   Intergalactic medium became neutral and transparent: the “Dark Ages” 
"   Subsequently reionised to ~10% 

"   When did it occur? Which sources caused it? What can we learn about “first 
light”? 
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Hubble eXtremely Deep Field 

HST / NASA, ESA, Garth Illingworth  etal., HUDF09 team 
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James Webb Space Telescope 

Background: ESO/S. Guisard 

NASA-ESA-CSA optical-infrared astrophysics observatory, scheduled launch 2018 
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A very distant Type 1a supernova 

HST WFC3 / Supernova in Hubble Ultradeep Field / ESA, NASA, Adam Riess, Steven Rodney 
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Evidence for an accelerated expansion 

Supernova Type 1a Hubble diagram, Riess et al. 2007 
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XMM-Newton 

 ESA X-ray astrophysics observatory, launched 1999 
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Dark matter maps reveal cosmic scaffolding 

Massey et al. (2007, Nature) 

"   Deep multi-λ survey of COSMOS field 
"   1.67 square degree field 
"   1000 hrs with HST 

"   400 hrs with XMM-Newton 

"   Sensitivity to different components 
"   Optical-infrared: cold baryonic matter 
"   X-ray: hot baryonic matter 

"   Gravitational lensing: total matter (baryonic + dark) 

"   Tomographic reconstruction of dark matter 
"   Large scale distribution resolved in 3D 
"   Loose network of filaments, growing over time 

"   Intersections coincident with massive galaxy 
clusters 

"   Consistent with numerical simulations of 
gravitational structure formation 

Red: X-ray emission; Blue: dark matter map 

3D map of dark matter 
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Euclid 
Cosmic Vision M2 mission 

ESA dark Universe astrophysics survey mission, launch 2019 

1.2m passively cooled telescope to survey 15,000 deg2 
Visible imaging: RIz(AB) = 24.5 10σ point source limit 
Near-IR imaging: YJH(AB) = 24 5σ point source limit 
Near-IR R=400 spectroscopy to H(AB) = 22 



28 

Center for Cosmological Physics, Chicago 
NASA WMAP 

Initial structure imprinted on 
Universe at recombination has 
characteristic scale; follow its evolution 
as standard ruler to    present epoch 
(now ~ 150 Mpc) 
 
Near-IR spectroscopy provides accurate 
redshifts and 3D maps 

Baryon acoustic oscillations 
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Multiple probes of evolving cosmic structure 

Colombi, IAP 

Galaxy shapes systematically 
distorted by intervening matter 
(baryonic and dark) 
 
Wide-field, high-resolution visible 
imaging measures shear; near-IR 
imaging photometry measures  
photo-z’s for lensed galaxies 

Weak lensing 

Combined with Planck data, Euclid will yield DE parameters w to <1% and wa to < 5% 
Very large legacy survey data set for many other kinds of science 

ESA 



Instrument	  Overall	  WP	  Breakdown 	   	   	  	  	  	  	  	  	  	   	   	   	  VG	  :	  

Euclid!
Consortium!Euclid Deep+Wide survey model  

Euclid                                                                                  NAOJ                                           June  6th  2012 
 15000 deg2 in 5.5 years 

Courtesy Jerôme Amiaux,  
Roberto Scaramella, ESSWG 
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Gaia 

ESA precision astrometry mission, scheduled launch 2013 

Scanning satellite measuring two fields 
simultaneously onto a gigapixel CCD array 
 
Microarcsecond astrometry of a billion stars to 
V~20 to determine positions and velocities on 
plane-of-sky 
 
Radial velocity spectroscopy to measure line-
of-sight velocities 
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Gravitational deflection in the Solar System 

Light bending after subtraction of much larger deflection due to the Sun  
Jos de Bruijne / ESA 
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Planck 

 ESA cosmic microwave background experiment, launched 2009 
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The needle in the haystack 
CMB, T ~ 2.7 K 

Dipole, ΔT ~ 3 mK 

Milky Way, ΔT ~ 1 mK 

CMB anisotropies, ΔT ~ 50 μK 
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Planck all-sky image 

ESA, HFI & LFI consortia; released July 2010 
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Decomposition 

Point and compact sources The Milky Way 

Sunyaev-Zel’dovich effect Cosmic Microwave Background 

ESA, HFI & LFI consortia, Planck Collaboration 
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WMAP 7-yr CMB map 

WMAP, Jarosik et al. (2010) / NASA 
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The	  power	  spectrum	  depends	  on	  the	  composiLon	  of	  the	  universe	  
through	  the	  physics	  of	  the	  oscillaLons	  and	  the	  evoluLon	  of	  the	  bkg.	  
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Fitting the CMB power spectrum 

WMAP 7-yr CMB  temperature power spectrum, Jarosik et al. (2010); parameter variations, Hu & Dodelson (2002) 
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Milky Way as an electron calorimeter 
  Calculations for Zhalo= 4 kpc 
  Leptons lose ~60% of their energy 
  γ-rays: 50-50 by nucleons and by leptons 

Total gamma rays 
1.6% 

Neutral pions 
0.85% 

Synchrotron 
0.35% 

Bremsstrahlung 
0.15% 

Inverse Compton 
0.58% 

Primary 
electrons 

1.41% 

Primary nucleons 
98.6% 

Cosmic rays 
7.90×1040 erg/s 

Secondary 
leptons 

e+: 0.33% 
 e−: 0.10% 

0.06%  (13.5%)	 0.09%  (6.6%)	

* The percentages in brackets show the 
values relative to the luminosity of 
their respective lepton populations 

Strong+’2011 
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Fermi’s skymap of particle interactions 

  >100 MeV, 36 
months 

  shows where 
accelerated particles 
meet target (gas, 
photons) 

  ~80% of the emission 
is diffuse 

  many transients in the 
γ-ray sky 
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 Space Missions and LDF 

PAMELA
15-06-2006

AMS-02
16 -5-2011

BESS
13-12-2004            

23-12-2007

Fermi/GLAST 
11-6-2008

ATIC 
2002 - 2007 
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Break in the CR p and He absolute fluxes 

  Data from several experiments (BESS, 
AMS-01, ATIC’2009, CREAM’2010, 
PAMELA’2011) are all consistent and 
indicate spectral hardening above ~100 
GeV/nucleon 

  p/He ratio vs. rigidity R is smooth 

  He spectrum is flatter than proton spectrum  

  Heavier nuclei seem to share the same trend  

  New data may provide us with a hint to the 
origin of high energy CRs 

Adriani+’2011 

He 

p 
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R

HL

PI

  All scenarios are tuned 
to the data, except the  
Reference scenario 

  Scenarios L and H: the 
local source 
component is 
calculated by the 
subtraction of the 
propagated Galactic 
spectrum from the 
data 

  The local source is 
assumed to be close to 
us, so no propagation; 
only primary CR 
species 
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Fermi-LAT observations of the Earth’s limb 
p
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 Due to its proximity, the Earth is the 
brightest γ-ray source on the sky 

 The emission is produced by the CR 
cascades in the atmosphere 

 Most energetic γ-rays are produced by 
CRs hitting the top of the atmosphere at 
tangential directions (thin target)  

γ-ray flux >3.6 
GeV  

2 g cm-2 
γ-ray flux  
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  Broken power-law provides the 
best fit with indices  
2.84±0.03 / 2.68±0.02     
below/above the break at 
264±19 GeV 

  In perfect agreement with 
direct CR measurements!       
cf. PAMELA: 
2.85±0.015±0.004 / 
2.67±0.03±0.05, break at 
232+35-30 GV 

  A single power-law with index 
2.74±0.01 can’t be ruled out 
yet 

  Fermi-LAT continues to 
collect data: more statistics, 
and extension to higher 
energies 

  Can be used for instrument 
calibration 

Inferring the CR spectrum - II 

PRELIMINARY 

PRELIMINARY 

Broken power-law 

Earth’s limb 

Residuals 

CR protons 

He fixed 
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PAMELA data show rise in the positron fraction 

  PAMELA team reported a 
rise in the positron fraction 
perhaps due to “primary” 
positrons 

  So unexpected, it can’t be 
true! 

  Possible explanations: 
  primary astrophysical 

sources (e.g., pulsars) 
  dark matter 
  nonstandard secondary 

production (e.g., in the 
SNR shock) 

Nature 458, 607 (2009) 

IVM&Strong’1998"
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Fermi-LAT: e+ & e− fluxes and positron fraction 

  State-of-the-art: Fermi-LAT does not 
have a magnet, but used geomagnetic 
field  

  Measured absolute fluxes of e+ & e− 
  Fraction = ϕ(e+) / [ϕ(e+) + ϕ(e−)] 
  Confirmed rise in the positron fraction  
  Extended measurements up to 200 GeV 
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HEAT: J.Beatty et al., Phys. Rev. Lett. 93 (2004) 
AMS-1: M.Aguilar et al., Phys. Lett. B 646 (2007) 
Pamela: O.Adriani et al., Astropart. Phys. 34 (2010) 
FERMI: M.Ackermann et al., PRL 108 (2012) 



Run/Event 1329775818/ 60709 Run/Event 133119-743/ 56950 
Electron	  E=982	  GeV	   Positron	  E=636	  GeV	  
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Particle Identification !
in BESS-Polar II

A. Yamamoto, 12-11-06 56 BESS Experiment 



PAMELA trapped antiprotons 

O. Adriani et al., APJL 737 L29 (2011); arXiv:1107.4882         ICRC≠≠1029 
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JEM - EUSO 
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Gravitational waves 
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LISA Pathfinder 

ESA gravitational wave detection technology testbed, scheduled launch 2014 
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Testing alternative theories of gravity 
"   Galaxies seen to have flat rotation curves 

"   Standard solution is that they are embedded in massive dark matter haloes 
"   Alternative: breakdown in Newtonian dynamics when background 

gravitational field drops below threshold ~ 10–10 m s–2 
"   MOND (Millegrom), TeVeS (relativistic version of MOND, Bekenstein), and others 

"   Direct test of modified gravity difficult 
"   e.g. at LISA Pathfinder station at L1,                                                                                        

background acceleration ~ 6 x 10–3 m s–2 

"   But there are saddle points (“bubbles”)                                                                 
where fields should cancel 
"   e.g. Sun-Earth saddle, ~ 250,000 km from Earth 

"   After nominal mission, LISA Pathfinder                                                                  
could fly through “MOND bubble” 
"   Monitor gravity gradient between test masses 
"   Predicted MOND “signal”: ~10–13 m s–2 for ~300s 
"   Only mission planned with required sensitivity 

Saddle 

Su
n 
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ACES 
"   Atomic Clock Ensemble in Space 

"   PHARAO: Cs atomic clock (CNES) 
"   SHM: Hydrogen maser (ESA) 

"   Microwave link to ground terminals 
"   Science goals:  

"   Measurement of gravitational redshift 
"   Precision 50 x 10–6 in 300 s; 2 x 10–6 in 10 days 

"   Time variations in fine structure constant 
"   α–1 . dα/dt < 10–17 yr–1 

"   Search for anisotropies in speed of light 
"   Δc/c ~ 10–10 

"   Relativistic geodesy at 10 cm level 

"   Low-Earth orbit 
"   To be installed on ISS in 2015 

"   Ground-terminals: Europe, US, Asia, 
Australia ESA (Human Spaceflight programme)-CNES 
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STE-QUEST 
Cosmic Vision M3 candidate mission 

"   Space Time Explorer and Quantum 
Equivalence Space Test 
"   Laser-cooled Rb microwave atomic clock 
"   85Rb/87Rb differential matter interferometer 

"   Microwave/optical links to ground 
terminals 

"   Science goals:  
"   Earth gravitational redshift 

"   Precision 2 x 10–7; ultimate aim 4 x 10–8 

"   Sun gravitational redshift 
"   Precision 2 x 10–6; ultimate aim 6 x 10–7 

"   Universality of propagation of matter 
waves 
"   Measurement of Eötvös parameter to < 10–15 

"   Highly-elliptical Earth orbit 
Mission to provide high precision test of Einstein Equivalence Principle, nominal launch in 2022–2024  
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H. Tanaka          
Volcanos muon radiography  

Text	  



J. Kirkby    Cosmic Ray influence on cloud formation  



VAN ALLEN BELT INSTABILITY AS MONITOR 
FOR EARTH SEISMICITY 
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Conclusions 1


One hundred years after the discovery of Cosmic Rays, in the 
era of the Higgs boson,  multimessenger observation of the 
Universe continues to provide outstanding physics results


The Universe reveal itself through the interaction of mass and 

energy deforming the  space-time texture


 A modern class of space observatories is pushing the limits of 
sensitivities to the edge of space and time, using most 

sophisticated technologies and Europe is playng a key role in 
these global scientific enterprises


Current generation of space instruments compete in cost and 

complexity with the largest  LHC experiments





Conclusions 2


The links between astrophysics, cosmology, astroparticle 
physics and the physics at the accelerators are stronger and 

deeper than ever


The detailed study of the CMB, light, gamma rays, cosmic rays 
and gravitational waves are providing extraordinary 

experimental insights in the early phases of the universe, 
testing fundamental concepts in particle physics like number 

of neutrino species, dark matter, symmetry breaking, 
inflation, phase transitions......


Still most of the Universe remain unexplained : dark matter, 
dark energy, absence of antimatter are striking examples of 

how long is our journey to understand the place we live




Thank You !Thanks   ! 


