## HL-LHC Physics: ATLAS

Bill Murray On behalf of the ATLAS collaboration

23<sup>rd</sup> November 2012

### **Benchmark Scenario**

- Approved running to deliver 300 fb<sup>-1</sup> by ~2021
  - With 40x Higgs production so far reported on
- Post LS3 operation at 5x10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> (with lumi levelling)
  - 25 ns bunch spacing
  - 140 events per bunch crossing
  - 3000 fb<sup>-1</sup> over 10 years
- Significant detector upgrades required:
  - ITK all-silicon detector replacing current tracker
  - L0/L1 hardware trigger 200KHz output
  - Major readout and DAQ work
  - Achieve similar detector performance in harsher environment
- Trigger is a key component:
  - multi-object triggers essential
  - Thresholds not too dissimilar to today
    - Mandated by need to study Higgs-like boson
- LOI for ATLAS HL-LHC (Phase 2) upgrades in preparation



### **Event complexity**

ATLAS was designed for 23 events per bunch-crossing
 And continues to do an excellent job with 35





But it will not handle 140 events of pileup



### **Inner Tracker Replacement**



- All-silicon tracker to meet the needs of 150 events pileup
- Tracker designs are well in hand
  - much work to do but it looks achievable
- Physics object performance retained through granularity
  - Also contributes to new L1 track trigger
- Current studies assume that single object performance is comparable to today



### **Can we handle the data?**

Event complexity will increase (data per bunch crossing)
The physics goals will require higher trigger rates



 However Moores Law will help - in ten years disk costs have dropped by a factor 100

Gives confidence that the computing needs can be met





### **HL-LHC Physics goals**

#### HL-LHC will be the only machine exploring above 1 TeV

- There will be a wide physics programme
- Curent studies focussed on a subset of key items

#### Standard Model

- Vector boson scattering at high mass
- Exotics
  - Z'
- SUSY
  - Squarks/gluinos
  - Third generation squarks
  - Charginos/Neutralinos
- Higgs
  - Couplings
  - Self-coupling
  - CP studies in backup



### **Vector boson scattering: ZZ**

- Vector boson scattering fundamental test
   Higgs regularises the scattering SM cross-section
  - But there any many other possibilities



W.Murray STFC/RAL

man





- Allows O(10 $\sigma$ ) measurement of a ~TeV vector resonance
- Dileptonic mode allows sensitive limits



### **SUSY searches**

- So far there has been no sign of supersymmetry at LHC
  - There are a lot of constraints on weak-scale SUSY
  - But only a tiny fraction of the total LHC data has been studied
    - 3<sup>rd</sup> generation squarks have low cross-sections
    - Colourless SUSY particles lower still
- If we find it:
  - We have a large set of particles to study in detail
  - Thus a SUSY discovery will mandate more luminosity
- If we do not find it by 2020
  - HL-LHC offers a ~25% increase in mass reach
    - e.g. Hundreds of GeV more
  - Exploring a space no other machine will explore for decades



### **Squarks and Gluinos**

- HL-LHC gives tight limits:
  - 3TeV squarks
  - 2.5TeV gluinos
- 400 GeV rise in sensitivity c/f 300fb<sup>-1</sup>
  - For discovery or exclusion
- This plot assumes common masses and a massless neutralino

W.Murray STFC/RAL





### **Searches for stop**



- Search for  $t \rightarrow t + \chi_1^0$  and  $t \rightarrow b + \chi_1^{\pm}$ 
  - One lepton (top) and two lepton (chargino) modes
- Naturalness requires sub-TeV  $\tilde{t}_1$  explored by HL-LHC



### **Gaugino sector**

- Search for  $\chi_1^{\pm}\chi_2^{0}$  in decay to  $W\chi_1^{0}Z\chi_1^{0}$
- Three leptons and excess E<sup>miss</sup> c/f
   SM WZ production
- Background also from top
- 3000 fb<sup>-1</sup> hugely extends discovery reach
  - This is rate limited

• Similar increase  $450 \rightarrow 950 \text{GeV}$  in sensitivity in  $W\chi_1^0 h\chi_1^0$  decay mode





### **Exotics Searches**

 Searches for tt resonances or Z' to leptons can exploit the high luminosity effectively:

| mode1                     | $300  \text{fb}^{-1}$ | $1000  {\rm fb^{-1}}$ | $3000  \text{fb}^{-1}$ |
|---------------------------|-----------------------|-----------------------|------------------------|
| g <sub>KK</sub>           | 4.3 (4.0)             | 5.6 (4.9)             | 6.7 (5.6)              |
| Z' <sub>Topcolour</sub>   | 3.3 (1.8)             | 4.5 (2.6)             | 5.5 (3.2)              |
| $Z'_{SSM} \rightarrow ee$ | 6.5                   | 7.2                   | 7.8                    |
| $Z'_{SSM} \to \mu\mu$     | 6.4                   | 7.1                   | 7.6                    |

#### Main challenges are

- Reconstructing highly boosted top
  - Very dense jet cores expected
- Ensuring lepton measurement at high  $p_{\tau}$ 
  - Leakage from calorimeter could be an issue
  - Muon alignment critical



### **The Higgs search**

- 1964 Brout & Englert, Higgs, Guralnik, Hagen & Kibble,
- 1973 Experimental acceptance of the 'Standard Model'
- 1983 Discovery of W and Z bosons
- 1989-95 LEP studies Z's and rules out  $m_{H}$ <53 GeV
  - $_{\rm H}$  And indicates that  $\rm m_{_H}{<}300 GeV$
- 2000 LEP limits reach 114.4 GeV
- 2012 LHC finds new particle at 126 GeV
  - Consistent with the Higgs
- 2020 Six σxB rates known to 40% or better
- 2030 Seven σxB rates known to 20% or better
  - HHH measured to  $3\sigma$  combining ATLAS+CMS





### **Higgs decay modes**

- Significant results in 3 channels already
- Sensitivity of 'big 5' differs only by about a factor 3
  - These will all improve
  - Plus we will distinguish gluon fusion, VBF, VH and ttH production
- There is a rich programme





### **Production rates so far**

- H to yy and IIII have narrow peaks
  - Without E<sub>T</sub><sup>Miss</sup> requirement
  - Will survive high pileup
- WW, bb and ττ are harder to predict with certainty







#### ttH,H → γγ

- Sensitive to top in both production and decay
- Reduces ambiguity in couplings
- H → μμ
  - c/f  $\tau$  allows direct study of coupling to two different generations



### **HL-LHC Higgs projections**

**ATLAS** Preliminary (Simulation)  $\sqrt{s} = 14 \text{ TeV}: \left[ \text{Ldt} = 300 \text{ fb}^{-1}; \right] \text{Ldt} = 3000 \text{ fb}^{-1}$ Ldt=300 fb<sup>-1</sup> extrapolated from 7+8 TeV H→µµ ttH,H $\rightarrow$ µµ VBF,H $\rightarrow \tau\tau$  $H\!\!\rightarrow ZZ$  $VBF,H\rightarrow WW$  $H \rightarrow WW$ VH, $H \rightarrow \gamma \gamma$ ttH,H→γγ VBF,H $\rightarrow\gamma\gamma$ Н→үү (+ј) Н→үү 0.2 0.4 0.6 0.8 0  $\frac{\Delta\mu}{\mu}$ 

- Only subset of channels studied
- But 10 channels will be constrained below 30%
- 7 of them below about 20%
- Solid region is the error without the current theoretical systematics.
  - These will likely be reduced in 10 years
- The ττ is estimated two ways:
  - using smeared assumptions, like other channels
    - But only VBF, no τ<sub>had</sub> τ<sub>had</sub> or sameflavour leptons
  - Extrapolating 2011 performance
- No bb results
  - Systematic dominated, estimation hard



### **HL-LHC Higgs couplings**



|   |                | $300  \text{fb}^{-1}$ | $3000  \text{fb}^{-1}$ |
|---|----------------|-----------------------|------------------------|
| - | κ <sub>V</sub> | 3.0% (5.6%)           | 1.9% (4.5%)            |
|   | КF             | 8.9% (10%)            | 3.6% (5.9%)            |

- LHC cannot measure Higgs width
  - But ratios of couplings at <O(20%) level</li>
- Systematic errors are approximate
- Extracted couplings improved by factor 2 or more
  - Except  $\Gamma_w/\Gamma_z$  where WW is assumed not to be benefit from HL-LHC.
- Remember LHC found the Higgs with less luminosity and worse pileup than planned.
  - These may be conservative



### **Can we see the BEH field?**

- The observation of a field filling space with weak charge and energy density poses questions about its gravitational impact
- We have seen the decay to ZZ, where the weak charge of the Higgs is absorbed by the vacuum
- But we need to demonstrate the potential
- i.e. measure the self-coupling





### **Higgs Self coupling**





- Needs observation of Higgs pairs
  - That's a tall order!
- But it is not enough
  - Need to prove triple Higgs involved
  - negative interference :(
- bbyy allows 3σ HH observation
  - 2 experiments, more channels, may give 3σ coupling measurement

- Studied using parametrised performance
- Background ~24 events
  - 18 of them ttH
  - Signal of 15 events expected, λ=1
    - 26/8 for λ=0,2



# AT LAS

### Summary

- 300fb<sup>-1</sup> at 14TeV allows for remarkable physics
- The increase to 3000fb<sup>-1</sup> extends it substantially.
- HL-LHC will explore:
  - Multi-TeV region for Z'
  - 3TeV for simple SUSY
  - Over 800GeV for charginos and neutralinos
- Will study electroweak symmetry breaking
  - Vector boson scattering at TeV scale
  - Higgs couplings directly
  - First measurement of the self-coupling
- This is a rich and compelling programme



### **CP** violation

Interaction between spin 0 particle and 2 vector bosons:

$$A(X \rightarrow VV) \sim \left(a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_\mu (q_1 + q_2)_\nu + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta\right) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$$

- Assume  $a_1 = 1$  and  $a_2 = 0$  (as SM) and vary  $a_3$ 
  - the CP violating component
- The expected power to reject various possible  $a_3$ :

| Integrated            | Signal (S) and   | 6 <b>+</b> 6 <i>i</i> | 6 <i>i</i> | 4 + 4i |
|-----------------------|------------------|-----------------------|------------|--------|
| Luminosity            | Background (B)   |                       |            |        |
| $100 \text{ fb}^{-1}$ | S = 158; B = 110 | 3.0                   | 2.4        | 2.2    |
| $200 \text{ fb}^{-1}$ | S = 316; B = 220 | 4.2                   | 3.3        | 3.1    |
| $300 \text{ fb}^{-1}$ | S = 474; B = 330 | 5.2                   | 4.1        | 3.8    |

