Theory $\left|\mathbf{V}_{\text {xb }}\right|$ determinations

Giulia Ricciardi

Università di Napoli "Federico II"

Italy

Outline:

$$
\begin{aligned}
& \left(V_{u d} V_{u s} V_{u b} \delta V_{c b} / V_{\text {cb }} \sim 2 \% \quad \square\right. \text { Semileptonic decays } \\
& \square \text { Exclusive } B \rightarrow D^{(*)} \ell v \\
& \ell=e, \mu \\
& \square \text { Inclusive } B \rightarrow X_{c} l v \\
& \delta \mathrm{~V}_{\mathrm{tb}} / \mathrm{V}_{\mathrm{tb}} \sim 5-8 \% \\
& \text { - } \sigma_{t \bar{t}} \text {, single top } \\
& \square \text { Semileptonic decays } \\
& \square \text { Exclusive } B \rightarrow \pi \ell v \\
& \square \text { Inclusive } B \rightarrow X_{u} l v \text {, }
\end{aligned}
$$

\square Leptonic decay $B \rightarrow \tau v$

Vcb

* normalizes the whole unitarity triangle
*input for NP sensitive other estimates

Exclusive decays $\left.B \rightarrow D^{*}\right) \mathrm{ev}_{v}$

$$
\begin{array}{r}
\frac{d \Gamma}{d \omega}\left(B \rightarrow D^{*}(D)\right) \propto\left|V_{c b}\right|^{2}\left(\omega^{2}-1\right)^{1 / 2(3 / 2)} F(\omega, \theta)^{2}\left(G(\omega)^{2}\right) \\
\omega=\frac{p_{D(*)} \cdot p_{B}}{m_{B} m_{D(*)}}
\end{array}
$$

1) Data for $\left|V_{c b}\right||\mathcal{G}(\omega)|$ and $\left|V_{c b}\right||\mathcal{F}(\omega)|$
taken at $\omega \neq 1$ due to kinematics
2) Results extrapolated at non-recoil point $w=1$

Data from LEP, CLEO, Babar and Belle reduction both syst (max $\frac{1}{2}$) and stat errors (almost 1/10)

$$
F(\omega=1)=G(w=1)=1 \quad \text { Heavy flavour limit }
$$

$+c(\mathbf{\alpha})+C\left(\frac{1}{m}\right)+C\left(\frac{1}{m^{2}}\right)+\ldots$
3) Nonperturbative th evaluation of form factor at non-recoil point
4) $\left|V_{c b}\right|$ extraction

$B \rightarrow D^{*}{ }^{2}$

Preferred

- Theory
\checkmark less suppressed at zero recoil: $\left(\omega^{2}-1\right)^{1 / 2}$ (rather than $\left.\left(\omega^{2}-1\right)^{3 / 2}\right)$
\checkmark vanishing corrections order $1 / \mathrm{m}$ (Luke's theorem)
- Experiment
\checkmark cleaner signal $D^{*} \rightarrow D \pi$ (slow pion)
Dynamics decay $\omega \neq 1$ may be parameterized by normalization and shape parameters $\rho, \mathrm{R}_{1}(1), \mathrm{R}_{2}(1)$ (HQET)

Data fit $\left|V_{c b}\right||\mathcal{F}(1)|=(35.90 \pm 0.45) \times 10^{-3}$ HFAG 12 (more recent Belle 10)

Mangoni CKM 12
background events also involving higher mass charm states (via B $\rightarrow D^{* *} \mid \mathrm{v}$)
\checkmark BR for inclusive $B \rightarrow X_{c} I v$ not saturated by sum of exclusive $B R$
$\checkmark \Gamma\left(B \rightarrow D * *\left(j_{l}=\frac{3}{2}\right) l v\right) \gg \Gamma\left(B \rightarrow D * *\left(j_{l}=\frac{1}{2}\right) l v\right)$
th prediction not confirmed by data
LATTICE STUDIES HAVE STARTED (Atoui, Becirevic,5...12)

$$
B \rightarrow D^{*} P V
$$

a pertubative order: complete α_{s}^{2} at zero recoil

- Power suppressions $O\left(1 / \mathrm{m}_{c}^{2}\right)$
\checkmark Lattice unquenched calculations

FNAL/MILC (from 2008)
$\mathscr{F}(1)=0.908 \pm 0.017$

$$
\left|V_{c b}\right|=\left(39.54 \pm 0.50_{\exp } \pm 0.74_{\text {th }}\right) \times 10^{-3}
$$

full MILC data set, reduced discretization effects, $\delta\left|\mathrm{V}_{\mathrm{cb}}\right|$ down to 1.6%
\checkmark Non-lattice zero recoil sum rules. Lattice budget error questioned (HQ masses, matching) Gambino et al 2012
$\mathscr{F}(1)=0.86 \pm 0.02$

$$
\left|V_{c b}\right|=\left(41.6 \pm 0.6_{\exp } \pm 1.9_{\mathrm{th}}\right) \times 10^{-3}+\mathrm{HFAG} 2012
$$

$B \rightarrow D \operatorname{lv}$

\square Power suppression corrections to the unity limit at zero recoil
\checkmark Lattice unquenched calculations

$$
\mathscr{G}(1)=1.074 \pm 0.024
$$

Data fit: normalization and slope $\rho^{2} \quad\left|V_{c b}\right||\mathscr{G}(1)|=(42.64 \pm 1.53) \times 10^{-3}$

$$
\left|V_{c b}\right|=\left(39.70 \pm 1.42_{\exp } \pm 0.89_{\mathrm{th}}\right) \times 10^{-3}
$$

\checkmark Non-lattice
heavy quark expansion (BPS limit) $\quad \mathscr{G}(1)=1.04 \pm 0.02$

$$
\left|V_{c b}\right|=\left(40.7 \pm 1.5_{\mathrm{exp}} \pm 0.8_{\mathrm{th}}\right) \times 10^{-3} \quad \text { PDG } 12
$$

form factor directly at non-zero recoil, avoiding extrapolation and reducing model dependence (quenched)

$$
\left|V_{c b}\right|=\left(41.6 \pm 1.8 \pm 1.4 \pm 0.7_{F F}\right) \times 10^{-3}
$$

Inclusive decays $B \rightarrow X_{c} \mid v$

$$
\Gamma\left(B \rightarrow X_{q} l \nu\right)=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{q b}\right|^{2}\left[c_{3}<O_{3}>+c_{5} \frac{<O_{5}>}{m_{b}^{2}}+c_{6} \frac{<O_{6}>}{m_{b}^{3}}+O\left(\frac{1}{m_{b}^{4}}\right)\right]
$$

sum over all possible final states X_{q} (single and multi-particle)
no dependence on details of final state, quark-hadron duality generally assumed

> OPE factorization of short and long distance dynamics
\checkmark Short distance: coefficients, perturbative
\checkmark Long distance: matrix elements, non-perturbative, HQET parameterization
\square Common hadronic parameters in OPE to different inclusive B meson observables (spectra, moments): can be measured in experiments \Longrightarrow global fit
\square quark masses defined in a scheme (1S, kinetic, etc.); other hadronic parameters in consistent framework

double series in α_{s} and Λ / m_{b}

kinetic scheme

- $O\left(a_{s}{ }^{2}\right)$ corrections to leading term (parton model)+BLM terms $a_{s}{ }^{n+1} \beta_{0}{ }^{n}$
[Melnikov, Czarnecki, Pak, Biswas , Gambino ,...]
- $\mathrm{O}\left(\Lambda / m_{b}^{2,3}\right)$ known, $O\left(\Lambda / m_{b}^{4,5}\right)$ estimated [Gremm, Kapustin, Dassinger, Turczyk, Mannel , Gambino, Bigi, Uraltsev, Zwicky ...]
$\alpha_{s} \frac{\mu_{\pi}{ }^{2}}{m b}$ modest corrections to width and moments (2012 new analytical computation)
[Becher, Boos, Lunghi, Alberti , Ewerth, Gambino, Nandi ,...]
- $\alpha_{s} \frac{\mu_{c}{ }^{2}}{m b}$ in progress (known for inclusive radiative decays, about 20% in the rate)
[Alberti, Ewerth, P. Gambino, S. Nandi,...]
- $\log m_{c}, 1 / m_{c}{ }^{2} \ldots$ intrinsic charm estimates
[Breidenbach, Feldmann, Mannel, Turczyk, Bigi, Mannel, Uraltsev, ...]
non trivial translation to other schemes \rightarrow e.g. $1 \mathrm{~S} \mu_{\pi}^{2}=-\lambda_{1}+O\left(\alpha_{s}\right), \ldots$
[Hoang, Bauer, Ligeti, Luke, Manohar, Trostt, ...]

Global fit results

global fit of $\left|V_{c b}\right|, m_{b}$ and hadron parameters
width + hadron, lepton momenta: about 70 measurements available (80\% from B factories)

Additional constraint to increase precision estimate in m_{b} photon energy moments in $B \rightarrow X_{s} \gamma$, or a precise constraint on m_{c}

Constraint	$\left\|V_{c b}\right\|\left(10^{-3}\right)$
$B \rightarrow X_{s} \gamma$	$41.94 \pm 0.43_{\mathrm{fit}} \pm 0.59_{\mathrm{th}}$
$m_{c}^{\mathrm{MS}}(3 \mathrm{GeV})$	$41.88 \pm 0.44_{\mathrm{fit}} \pm 0.59_{\mathrm{th}}$

kinetic scheme HFAG 12

Constraint	$\left\|V_{c b}\right\|\left(10^{-3}\right)$
$B \rightarrow X_{s} \gamma$	41.96 ± 0.45
None	42.37 ± 0.65

> 1S scheme
> (no m_{c} dependence) HFAG 12

$$
\frac{\delta V_{c b}}{V_{c b}}<2 \% \quad \text { to compare with excl } \sim 2 \%
$$

Vcb results: Pick your one

Future:

\square CLEO $\rightarrow \approx 50-70$ more stat B factories $\rightarrow \approx 50$ more stat Belle II
\square LHCb: about 1.2 million $B \rightarrow D^{*} \mu v$ decay reconstructed in $1 \mathrm{fb}^{-1}$; promising prospects for $\left|V_{c b}\right|$ measurement

$\left|v_{u b}\right|$

\star least known, but most studied CKM matrix element both theoretically and experimentally

* Connected to CP violation: $\sin 2 \beta$ from $B \rightarrow J / \psi$ к compatibility strongly depends on input for $\left|V_{u b}\right|$
(see Silvestrini's talk)

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ exclusive detemination

- Traditionally extracted by the decay $B \rightarrow \pi \ell \mathrm{v}$ (only a single form factor in massless limit)

$$
\frac{\mathrm{d} \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell \bar{\nu}\right)}{\mathrm{d} q^{2}}=\frac{G_{F}^{2}\left|\vec{p}_{\pi}\right|^{3}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

$$
\begin{gathered}
\left\langle\pi^{+}(p)\right| \bar{u} \gamma_{\mu} b\left|\bar{B}^{0}(p+q)\right\rangle= \\
f_{+}\left(q^{2}\right)\left(2 p_{\mu}+q_{\mu}\right)
\end{gathered}
$$

Non-pert th predictions for f_{+}usually confined to regions of q^{2}

Complementarity

\checkmark Light Cone Sum Rules LCSR low q^{2} regions $\sim<16 \mathrm{GeV}$ (OPE near the light-cone)
\checkmark Lattice large $q^{2} \sim>16 \mathrm{GeV}$ (to avoid large discretization errors) Better fit with data

Babar 12

Other exclusive semileptonic players

Babar $12 \mathrm{BF} \times 10^{-4}$

$$
\begin{array}{cl}
\hline B \rightarrow \pi \ell^{+} \nu & 1.45 \pm 0.04 \pm 0.06 \\
B^{0} \rightarrow \pi^{-} \ell_{V}^{+} & 1.47 \pm 0.05 \pm 0.06 \\
& \\
B^{+} \rightarrow \pi^{0} \ell_{V}{ }_{V} & 0.77 \pm 0.04 \pm 0.03 \\
B^{+} \rightarrow \omega \ell^{+} \nu & 1.19 \pm 0.16 \pm 0.09 \\
B^{+} \rightarrow \eta \ell^{+} V & 0.38 \pm 0.05 \pm 0.05 \\
B^{+} \rightarrow \eta^{\prime} \ell_{V} \nu & 0.24 \pm 0.08 \pm 0.03 \\
\mathcal{B}\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right) & =(1.75 \pm 0.15 \pm 0.27) \times 10^{-4}
\end{array}
$$

Babar 11

$$
\begin{array}{lc}
B^{0} \rightarrow \pi^{+} \ell \nu & 1.49 \pm 0.09 \pm 0.08 \\
B^{+} \rightarrow \pi^{0} \ell \nu & 0.80 \pm 0.08 \pm 0.04 \\
B^{0} \rightarrow \rho^{+} \ell \nu & 3.17 \pm 0.27 \pm 0.18 \\
B^{+} \rightarrow \rho^{0} \ell \nu & 1.86 \pm 0.10 \pm 0.09 \\
B^{+} \rightarrow \omega \ell \nu & 1.09 \pm 0.16 \pm 0.08 \\
B^{+} \rightarrow \eta \ell \nu & 0.42 \pm 0.12 \pm 0.05 \\
B^{+} \rightarrow \eta^{\prime} \ell \nu & <0.57 \text { at } 90 \% \mathrm{CL}
\end{array}
$$

Belle prelim results (ICHEP 12) BF x 10^{-4}

Babar $12 B^{+} \rightarrow \eta l^{+} v$

Lattice

Unquenched results form factors for $B \rightarrow \pi \ell v$

Fermilab/MILC and HPQCD collabs.
substantial agreement

Theory	$q^{2}\left(\mathrm{GeV}^{2} / c^{4}\right)$	$\left\|V_{u b}\right\|\left(\times 10^{-3}\right)$
HPQCD 06	>16	$3.55 \pm 0.13_{-0.41}^{+0.62}$
FNAL 05	>16	$3.78 \pm 0.14_{-0.43}^{+0.65}$
FNAL/MILC 09	all regions	3.43 ± 0.33

Belle 12
(see Gamiz's talk)

Theory	$q^{2}\left(\mathrm{GeV}^{2} / c^{4}\right)$	$\left\|V_{u b}\right\|\left(\times 10^{-3}\right)$
HPQCD 06	$16-24.6$	$3.47 \pm 0.10 \pm 0.08_{-0.39}^{+0.60}$
FNAL/MILC 09	$16-24.6$	$3.31 \pm 0.09 \pm 0.07_{-0.37}^{+0.37}$
FNAL/MILC 09	all regions	

Light Cone Sum Rules

- Correlation functions
- OPE near the light-cone

Recent progress in pion distribution amplitudes

- NLO leading and LO high order twists
[Duplancic, Khodjamirian, Mannel, Melic, Offen, Wang, Ball, Jones...]
- latest update: leading-twist $O\left(a^{2}{ }_{s} \beta_{0}\right)$ corrections to $f_{+}\left(q^{2}\right)$

$$
\left|\stackrel{\Sigma}{V}_{u b}\right|=\left(3.34 \pm 0.10 \pm 0.05+_{-0.26}^{+0.29}\right) 10^{-3}
$$

- From $B^{+} \rightarrow \omega l^{+} v$

$$
\left|V_{u b}\right|=\left(3.20 \pm 0.21 \pm 0.12_{-0.32}^{+0.45}\right) 10^{-3} \quad \begin{gathered}
\text { Babar 12+ } \\
\text { Ball Zwicky } 05
\end{gathered}
$$

- From $B^{+} \rightarrow \rho l^{+} v$

$$
\left|V_{u b}\right|=(2.75 \pm 0.24) 10^{-3}
$$

Babar 11+
Ball Zwicky 05

- Future and in progress: extraction via $\Lambda_{b} \rightarrow p l v$, via $B_{s} \rightarrow K l v$

Bharucha, Melic, Duplánic, ...

Leptonic $B^{+} \rightarrow \ell^{+} v$

$$
B\left(B^{+} \rightarrow \ell^{+} \nu_{l}\right)=\frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8 \pi}\left\{\begin{array}{c}
\left.1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B} \\
\text { Helicitv sunbressed }
\end{array}\right.
$$

Helicity suppressed ($l=e, \mu$)
\checkmark th clean process but depends on f_{B}
(lattice precisely det: see Gamiz talk)

Horii talk

If there were NP....

Difficult to assess; a tree process
exchange of a new particle without NP effects in other observables
\square A charged scalar particle which couples proportionally to the masses of the fermions involved: a charged Higgs boson
\checkmark Consider also other constraints
e.g. Type II 2HDM disfavoured by recent data on $B \rightarrow D^{(*)} T V$

Compatible with Type III 2HDM

- Other possibilities: (essentially changing $\left|\mathrm{V}_{\mathrm{ub}}\right| \ldots$) right-handed currents, NP in B mixings

Crivellin, Greub, Kokulu, 12 Lenz et al, 12

Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$

$$
\text { large } b \rightarrow c \text { background }\left(\left|V_{c b} / V_{u b}\right|^{2} \approx 100\right)
$$

Need experimental phase space cuts to reduce background; in general

$$
m_{x} \ll E_{x}
$$

Phase space regions where OPE fails become dominant; new unwelcome effects (with respect to semileptonic $b \rightarrow c$):

- Final gluon radiation strongly inhibited: soft and collinear singularities
- perturbative expansion of spectra affected by large logarithms

$$
a_{s}{ }^{n} \quad \log ^{2 n}\left(2 E_{x} / m_{x}\right)
$$

to be resummed at all orders in PT

- non-perturbative effects related to a small vibration of the b quark in the B meson (Fermi motion) enhanced
- Experimental progress
- Belle results 09 access 90% data, claimed overall uncertainty of 7% on $\left|V_{u b}\right|$
- More recent Babar similar data range
- Theoretical approaches (HAFG averages)
- predictions based on parameterizations of shape function, and OPE constraints
- BLNP
- GGOU

Bosch, Lange, Neubert , Paz
Gambino, Giordano, Ossola, Uraltsev

- predictions based on resummed pQCD
- DGE Dressed Gluon Exponentiation

Andersen, Gardi

- ADFR

Aglietti, Di Lodovico, Ferrera, GR

- global fit of shape function, $\left|V_{u b}\right|$ and m_{b} (also data on $B \rightarrow X s y$)
- SIMBA

Data fit experiment by experiment

Data from HFAG (end of 2011)

- Spread among calculations comparable to quoted theoretical (non-parametric) errors

Results averages:

Long lasting puzzle

Exclusive

Incl vs Excl vs indirect fit

At SuperFlavour factories (75 $a b^{-1}$) errors expected to reduce to 3% (excl) 2% (incl)

Vtb

* Known by unitarity with great precision
* Let us meet directly: Beyond SM, beyond unitarity

In the standard model with 3 quark generations, the top quark is expected to decay to a W boson and a b quark roughly 99.8% of the time

The magnitude of $\left|\mathrm{V}_{\mathrm{tb}}\right|$ is expected to be close to unity as a consequence of unitarity and of the measured values for the other CKM elements
indirect fit $\quad\left|V_{t b}\right|=0.999106 \pm 0.000024$
Utfit 2013

Very recent CDF simultaneous measurement of ratio

$$
\frac{\mathcal{B}(t \rightarrow W b)}{\mathcal{B}(t \rightarrow W q)}=\frac{\left|V_{t b}\right|^{2}}{\left|V_{t b}\right|^{2}+\left|V_{t s}\right|^{2}+\left|V_{t d}\right|^{2}}
$$

and top-quark-pair-production cross section $\sigma_{t \bar{t}}$ (integrated luminosity of $8.7 \mathrm{fb}^{-1}$), assuming $\left|V_{t b}\right|>0.89$

$$
\left|V_{t b}\right|=0.97 \pm 0.05
$$

Agreement with SM, and previous CDF, D0, CMS measurements $\left|V_{t b}\right|=0.89 \pm 0.07$ (PDG 2012 average (includes single top))

Single top quark production cross section

possible to determine $\left|\mathrm{V}_{+b}\right|$ directly without assuming unitarity
First observation by CDF and DO in 2009;
With no assumptions on number of families or unitarity, but $S M$ vertex $+\left|V_{t b}\right|^{2} \gg\left|V_{t s}\right|^{2}+\left|V_{t d}\right|^{2}$
$\left|V_{t b}\right|=0.92_{-0.08}{ }^{+0.10} \pm 0.05$ (th)
CDF Moriond 13

LHC takes
Tevatron legacy
limits (unconstrained/constrained 95\% C.L.):
O CMS (8 TeV) $0.96 \pm 0.08_{(\text {exp })} \pm 0.02_{\text {(th) }} / 81<\mid V_{t b} \leq 1$

- ATLAS $(8 \mathrm{TeV}) 1.04_{-0.11}^{+0.10}(t h+\exp) / 80<\mid V_{t b} \leq 1$

If there were NP....

Relaxing unitarity (see also PMNS neutrino mixing matrix in Antush talk):
OHere simplest way: adding fermions
\checkmark vector-like quarks (in many models, e.g. RandallSundrum or E6 GUTS)

Botella,Branco, Nebota 2012, Buras, Duling, Gori, 2009...
\checkmark more fermion generations Lacker et al 2012,...
\checkmark Generally coupling affected at order 5\%
\checkmark Actual measurements about 8% precision: should nail it

Conclusions

