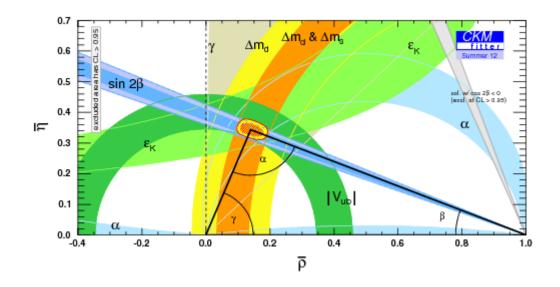

Theory $|V_{xb}|$ determinations

Giulia Ricciardi

Università di Napoli "Federico II" Italy



Outline:

 $\Box \text{ Leptonic decay } B \to \tau \nu$

Vcb

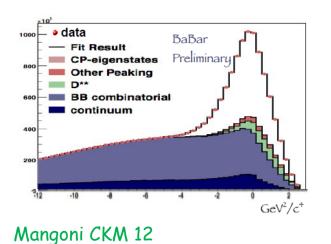
normalizes the whole unitarity triangle

input for NP sensitive other estimates

Exclusive decays
$$B \to D^{(*)} \ell v$$

$$\frac{d\Gamma}{d\omega} (B \to D^* (D)) \propto |V_{cb}|^2 (\omega^2 - 1)^{1/2} (3/2) F(\omega, \theta)^2 (G(\omega)^2)$$

$$\omega = \frac{p_{D(*)} \cdot p_B}{m_B m_{D(*)}}$$
1) Data for $|V_{cb}||\mathcal{G}(\omega)|$ and $|V_{cb}||\mathcal{F}(\omega)|$
taken at w≠1 due to kinematics
2) Results extrapolated at non-recoil point w=1
 $F(\omega = 1) = G(w = 1) = 1$
Heavy flavour limit
+
+ $c(\alpha) + C(\frac{1}{m}) + C(\frac{1}{m^2}) + ...$
3) Nonperturbative th evaluation of form factor at non-recoil point


4) $|V_{cb}|$ extraction

$B \rightarrow D^*\ell v$

Preferred □ Theory ✓ less suppressed at zero recoil: $(w^2-1)^{1/2}$ (rather than $(w^2-1)^{3/2}$) \checkmark vanishing corrections order 1/m (Luke's theorem) Experiment \checkmark cleaner signal D* \rightarrow D π (slow pion)

Dynamics decay $\omega \neq 1$ may be parameterized by normalization and shape parameters ρ , R₁(1), R₂(1) (HQET)

Data fit $|V_{cb}||\mathcal{F}(1)| = (35.90 \pm 0.45) \times 10^{-3}$ HFAG 12 (more recent Belle 10)

background events also involving higher mass charm states (via $B \rightarrow D^{**} | v$)

✓ BR for inclusive $B \rightarrow X_c \mid v$ not saturated by sum of exclusive BR $\checkmark \ \Gamma(B \to D * * \left(j_l = \frac{3}{2}\right) l \nu) \gg \Gamma(B \to D * * \left(j_l = \frac{1}{2}\right) l \nu)$ th prediction not confirmed by data

LATTICE STUDIES HAVE STARTED (Atoui, Becirevic, 5...12)

$B \rightarrow D^*\ell v$

 \Box pertubative order: complete α_s^2 at zero recoil

Czarnecki 96

D Power suppressions $O(1/m_c^2)$

 Lattice unquenched calculations

FNAL/MILC (from 2008)

 $\mathscr{F}(1) = 0.908 \pm 0.017$

 $\mathscr{F}(1) = 0.86 \pm 0.02$

$$|V_{cb}| = (39.54 \pm 0.50_{\text{exp}} \pm 0.74_{\text{th}}) \times 10^{-3}$$
 + HFAG 2012

full MILC data set , reduced discretization effects, $\delta |V_{cb}|$ down to 1.6% Lahio 2012

 Non-lattice zero recoil sum rules. Lattice budget error questioned (HQ masses, matching) Gambino et al 2012

$$|V_{cb}| = (41.6 \pm 0.6_{exp} \pm 1.9_{th}) \times 10^{-3}$$
 +HFAG 2012

$B \rightarrow D \ell v$

Power suppression corrections to the unity limit at zero recoil

✓ Lattice
unquenched calculations
$$\mathscr{G}(1) = 1.074 \pm 0.024$$
 FNAL/MILC 05
Data fit: normalization and slope ρ^2 $|V_{cb}||\mathscr{G}(1)| = (42.64 \pm 1.53) \times 10^{-3}$
 $|V_{cb}| = (39.70 \pm 1.42_{exp} \pm 0.89_{th}) \times 10^{-3}$ HFAG 12
✓ Non-lattice
heavy quark expansion (BPS limit) $\mathscr{G}(1) = 1.04 \pm 0.02$ Uraltsev 04
 $|V_{cb}| = (40.7 \pm 1.5_{exp} \pm 0.8_{th}) \times 10^{-3}$ PDG 12

form factor directly at non-zero recoil, avoiding extrapolation and reducing model dependence (quenched)

 $|V_{cb}| = (41.6 \pm 1.8 \pm 1.4 \pm 0.7_{FF}) \times 10^{-3}$

□ non-recoil unquenched FNAL/MILC in progress

Roma-TorVer 07 + Babar 09 Quio et al₇12

Inclusive decays $B \rightarrow X_c \mid v$

$$\Gamma(B \to X_q l \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{qb}|^2 \left[c_3 < O_3 > + c_5 \frac{< O_5 >}{m_b^2} + c_6 \frac{< O_6 >}{m_b^3} + O\left(\frac{1}{m_b^4}\right) \right]$$

sum over all possible final states X_q (single and multi-particle)

no dependence on details of final state, quark-hadron duality generally assumed

OPE factorization of short and long distance dynamics

- Short distance: coefficients, perturbative
 Long distance: matrix elements, non-perturbative, HQET parameterization
- Common hadronic parameters in OPE to different inclusive B meson observables (spectra, moments): can be measured in experiments —> global fit
- quark masses defined in a scheme (1S, kinetic, etc.); other hadronic parameters in consistent framework

double series in α_s and Λ/m_b

kinetic scheme

• $O(a_s^2)$ corrections to leading term (parton model)+BLM terms $a_s^{n+1}\beta_0^n$

[Melnikov , Czarnecki, Pak , Biswas , Gambino ,...]

• $O(\Lambda/m_b^{2,3})$ known, $O(\Lambda/m_b^{4,5})$ estimated

[Gremm, Kapustin, Dassinger, Turczyk, Mannel, Gambino, Bigi, Uraltsev, Zwicky ...]

- $\alpha_s \frac{\mu_{\pi}^2}{mb}$ modest corrections to width and moments (2012 new analytical computation) [Becher, Boos, Lunghi, Alberti, Ewerth, Gambino, Nandi,...]
- $\alpha_s \frac{\mu_c^2}{mb}$ in progress (known for inclusive radiative decays, about 20% in the rate) [Alberti, Ewerth, P. Gambino, S. Nandi,...]
- $\log m_c$, $1/m_c^2$... intrinsic charm estimates

[Breidenbach, Feldmann, Mannel, Turczyk, Bigi, Mannel, Uraltsev, ...]

non trivial translation to other schemes \rightarrow e.g. 1S $\mu_{\pi}^2 = -\lambda_1 + O(\alpha_s)$, ...

[Hoang, Bauer, Ligeti, Luke, Manohar, Trott, ...]

Global fit results

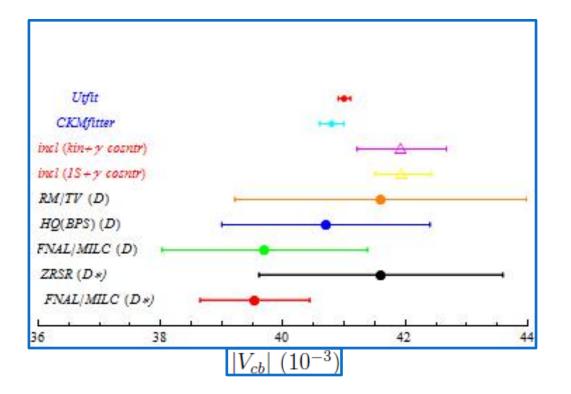
global fit of $|V_{cb}|$, m_b and hadron parameters

width + hadron, lepton momenta: about 70 measurements available (80% from B factories)

Additional constraint to increase precision estimate in m_b photon energy moments in $B \rightarrow X_s \gamma$, or a precise constraint on m_c

Constraint	$ V_{cb} $ (10 ⁻³)
$B \to X_s \gamma$	$41.94 \pm 0.43_{\rm fit} \pm 0.59_{\rm th}$
$m_c^{\overline{\mathrm{MS}}}(3 \ \mathrm{GeV})$	$41.88 \pm 0.44_{\rm fit} \pm 0.59_{\rm th}$

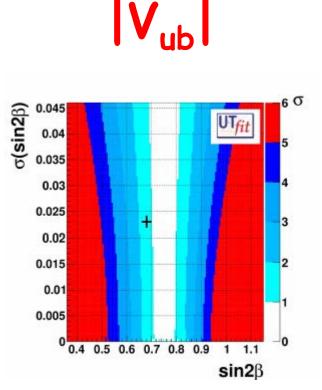
kinetic scheme HFAG 12


Constraint	$ V_{cb} $ (10 ⁻³)
$B \to X_s \gamma$	41.96 ± 0.45
None	42.37 ± 0.65

15 scheme (no m_c dependence) HFAG 12

 $\frac{\delta V_{cb}}{2\%} < 2\%$

to compare with excl $\sim 2\%$


Vcb results: Pick your one

Future:

□ CLEO $\rightarrow \approx 50-70$ more stat B factories $\rightarrow \approx 50$ more stat Belle II

□ LHCb: about 1.2 million $B \rightarrow D^* \mu \nu$ decay reconstructed in 1 fb⁻¹; promising prospects for $|V_{cb}|$ measurement

least known, but most studied CKM matrix element both theoretically and experimentally

☆Connected to CP violation: sin 2β from $B → J/\psi \kappa$ compatibility strongly depends on input for $|V_{ub}|$ (see Silvestrini's talk)

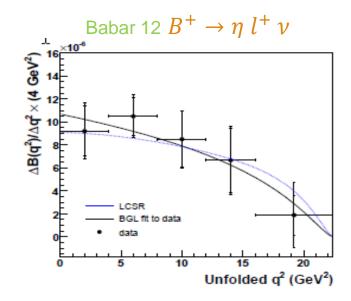
$|V_{ub}|$ exclusive detemination

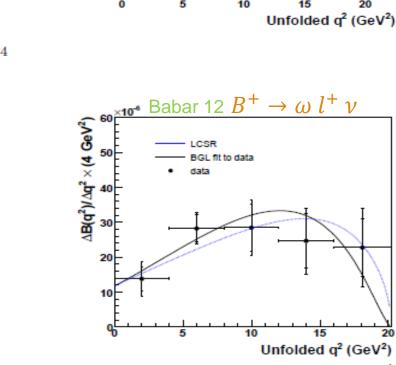
□ Traditionally extracted by the decay $B \rightarrow \pi \ell v$ (only a single form factor in massless limit)

$$\frac{\mathrm{d}\Gamma(\bar{B}^0 \to \pi^+ \ell \bar{\nu})}{\mathrm{d}q^2} = \frac{G_F^2 |\vec{p}_\pi|^3}{24\pi^3} \left| V_{ub} \right|^2 \left| f_+(q^2) \right|^2$$

$$\langle \pi^+(p) | \bar{u} \gamma_\mu b | \bar{B}^0(p+q) \rangle = f_+(q^2) (2p_\mu + q_\mu)$$

Non-pert th predictions for f_{+} usually confined to regions of q^2


Complementarity ✓ Light Cone Sum Rules LCSR low q² regions ~ < 16 GeV (OPE near the light-cone)


✓ Lattice large q² ~ > 16 GeV
 (to avoid large discretization errors)
 Better fit with data

Babar 12 Babar 12

[Unquenched HPQCD 07, FNAL/MILC 09, LCSR Khodjamirian et al 11, BGL: Boyd, Grinstein, Lebed, (2 par)]

Other exclusive semileptonic players

Babar 12 BF x 10 ⁻⁴		
$B \rightarrow \pi \ell^+ \nu$	$1.45 \pm 0.04 \pm 0.06$	
$B^0 \rightarrow \pi^- \ell^+ \nu$	$1.47 \pm 0.05 \pm 0.06$	
$B^+ \to \pi^0 \ell^+ \nu$	$0.77 \pm 0.04 \pm 0.03$	
$B^+ \rightarrow \omega \ell^+ \nu$	$1.19 \pm 0.16 \pm 0.09$	
$B^+ \rightarrow \eta \ell^+ \nu$	$0.38 \pm 0.05 \pm 0.05$	
$B^+ \rightarrow \eta' \ell^+ \nu$	$0.24 \pm 0.08 \pm 0.03$	
$\mathcal{B}(\mathcal{D}^0 \setminus \mathcal{A}^{-\ell+1})$	$-(1.75\pm0.15\pm0.9)$	

 $\mathcal{B}(B^0 \to \rho^- \ell^+ \nu) = (1.75 \pm 0.15 \pm 0.27) \times 10^{-4}$ Babar 11

$B^0 ightarrow \pi^+ \ell \nu$	$1.49 \pm 0.09 \pm 0.08$
$B^+ o \pi^0 \ell \nu$	$0.80 \pm 0.08 \pm 0.04$
$B^0 ightarrow ho^+ \ell \nu$	$3.17 \pm 0.27 \pm 0.18$
$B^+ \rightarrow \rho^0 \ell \nu$	$1.86 \pm 0.10 \pm 0.09$
$B^+ \rightarrow \omega \ell \nu$	$1.09 \pm 0.16 \pm 0.08$
$B^+ \rightarrow \eta \ell \nu$	$0.42 \pm 0.12 \pm 0.05$
$B^+ o \eta' \ell \nu$	< 0.57 at 90% CL

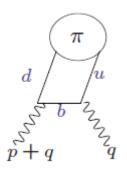
Belle prelim results (ICHEP 12) BF x 10^{-4}

Lattice

Unquenched results form factors for $B \rightarrow \pi \ell v$ Fermilab/MILC and HPQCD collabs. \implies substantial agreement

Theory	$q^2 \; ({\rm GeV}^2/c^4)$	$ V_{ub} $ (×10 ⁻³)
HPQCD 06	> 16	$3.55 \pm 0.13 \substack{+0.62 \\ -0.41}$
FNAL 05	> 16	$3.78 \pm 0.14^{+0.65}_{-0.43}$
FNAL/MILC 09	all regions	3.43 ± 0.33

Belle 12


Babar 12

(see Gamiz's talk)

Theory	$q^2 (\text{GeV}^2/c^4) = V_{ub} (\times 10^{-3})$
HPQCD 06 FNAL/MILC 09	$\begin{array}{ll} \textbf{16-24.6} & 3.47 \pm 0.10 \pm 0.08 \substack{+0.60 \\ -0.39} \\ \textbf{16-24.6} & 3.31 \pm 0.09 \pm 0.07 \substack{+0.37 \\ -0.30} \end{array}$
FNAL/MILC 09	all regions 3.43 ± 0.33

Light Cone Sum Rules

- Correlation functions
- OPE near the light-cone

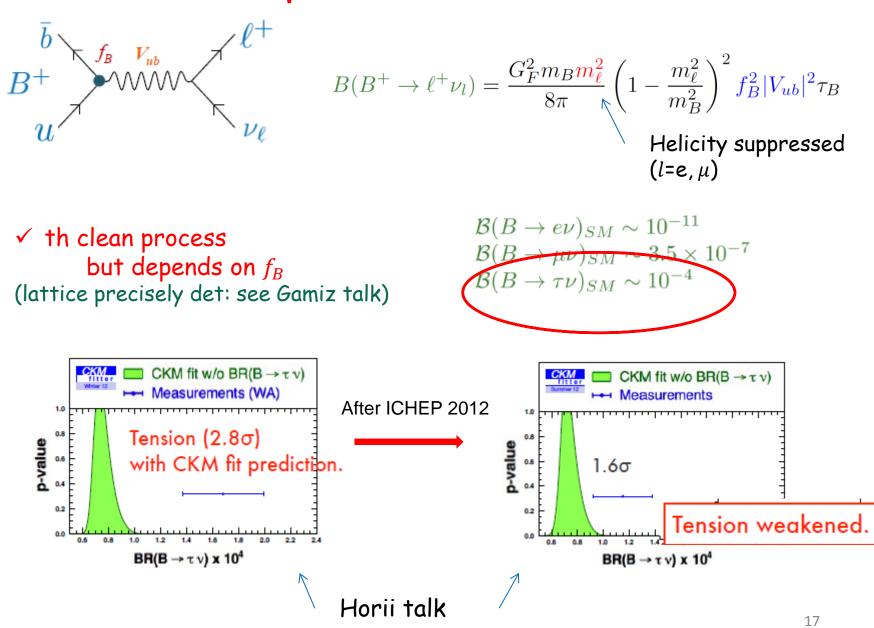
Recent progress in pion distribution amplitudes

• NLO leading and LO high order twists

[Duplancic, Khodjamirian, Mannel, Melic, Offen, Wang, Ball, Jones...]

• latest update: leading-twist $O(a_s^2 \beta_0)$ corrections to $f_+(q^2)$

$$|\dot{V}_{ub}| = (3.34 \pm 0.10 \pm 0.05 + ^{+0.29}_{-0.26})10^{-3}$$
 Babar 12+
Bharucha 12


• From
$$B^+ \to \omega \ l^+ \nu |V_{ub}| = (3.20 \pm 0.21 \pm 0.12^{+0.45}_{-0.32}) 10^{-3}$$

Babar 12+
Ball Zwicky 05

• From
$$B^+ \to \rho \ l^+ \nu$$

 $|V_{ub}| = (2.75 \pm 0.24) 10^{-3}$ Babar 11+
Ball Zwicky 05

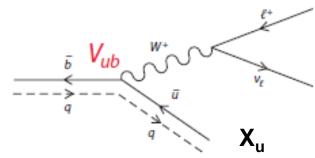
• Future and in progress: extraction via $\Lambda_b \rightarrow p \ l \ \nu$, via $B_s \rightarrow K \ l \ \nu$

Bharucha, Melic, Duplánic, ...

Leptonic $B^+ \rightarrow \ell^+ \nu$

If there were NP....

Difficult to assess; a tree process exchange of a new particle *without* NP effects in other observables


□ A charged scalar particle which couples proportionally to the masses of the fermions involved: a charged Higgs boson

✓ Consider also other constraints e.g. Type II 2HDM disfavoured by recent data on $B \rightarrow D^{(*)}_{TV}$ Compatible with Type III 2HDM

□ Other possibilities: (essentially changing |V_{ub}|...) right-handed currents, NP in B mixings

Crivellin, Greub, Kokulu, 12 Lenz et al, 12

Inclusive $|V_{ub}|$

large b \rightarrow c background ($|V_{cb}/V_{ub}|^2 \approx 100$)

Need experimental phase space cuts to reduce background; in general

$m_X \ll E_X$

Phase space regions where OPE fails become dominant; new unwelcome effects (with respect to semileptonic $b \rightarrow c$):

- Final gluon radiation strongly inhibited: soft and collinear singularities
- perturbative expansion of spectra affected by large logarithms

 $a_{s}^{n} \log^{2n}(2 E_{X}/m_{X})$

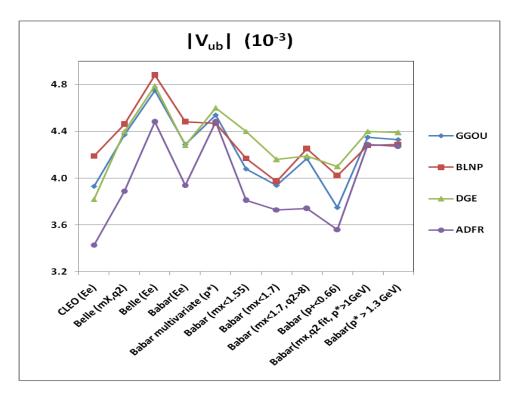
to be resummed at all orders in PT

 non-perturbative effects related to a small vibration of the b quark in the B meson (Fermi motion) enhanced

- Experimental progress
 - Belle results 09 access 90% data, claimed overall uncertainty of 7% on $\left|V_{ub}\right|$
 - More recent Babar similar data range
- Theoretical approaches (HAFG averages)
 - predictions based on parameterizations of shape function, and OPE constraints
 - BLNP Bosch, Lange, Neubert , Paz
 - GGOU

Gambino, Giordano, Ossola, Uraltsev

- predictions based on resummed pQCD
- DGE Dressed Gluon Exponentiation
- ADFR


— SIMBA

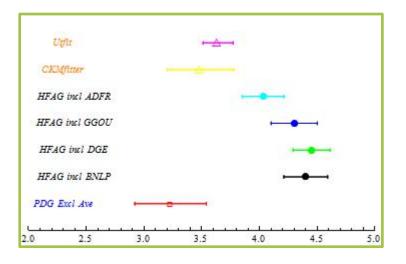
Andersen, Gardi

- Aglietti, Di Lodovico, Ferrera, GR
- global fit of shape function, $|V_{ub}|$ and $m_b\,$ (also data on $B \to Xs~\gamma$)

Tackmann, Lacker, Ligeti, Stewart...

Data fit experiment by experiment

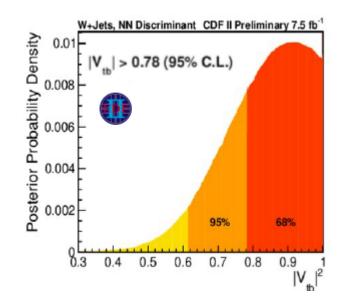
Data from HFAG (end of 2011)


• Spread among calculations comparable to quoted theoretical (non-parametric) errors

Results averages: Long lasting puzzle

Khodjamirian et al. $q^2 < 12$ $3.40 \pm 0.07 \pm 0.37 - 0.32$ Ball-Zwicky $q^2 < 16$ $3.57 \pm 0.06 \pm 0.59 - 0.39$ HPQCD $q^2 < 16$ $3.45 \pm 0.09 \pm 0.60 \pm 0.39$ FNAL/MILC $q^2 < 16$ $3.30 \pm 0.09 \pm 0.37 - 0.30$ HFAG End Of 2011 2 4 0 $|V_{\mu b}| [\times 10^{-3}]$

Exclusive


Incl vs Excl vs indirect fit

 $|V_{ub}|$ [x 10⁻³]

At SuperFlavour factories (75 ab⁻¹) errors expected to reduce to 3 % (excl) 2% (incl)

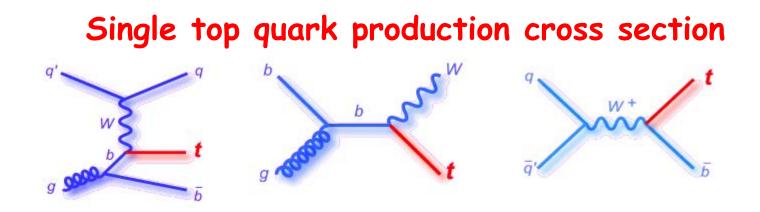
Vtb

- Known by unitarity with great precision
- Let us meet directly: Beyond SM, beyond unitarity

□ In the standard model with 3 quark generations, the top quark is expected to decay to a W boson and a b quark roughly 99.8% of the time

 \Box The magnitude of $|V_{tb}|$ is expected to be close to unity as a consequence of unitarity and of the measured values for the other CKM elements

indirect fit $|V_{tb}| = 0.999106 \pm 0.000024$ Utfit 2013


Very recent CDF simultaneous measurement of ratio

$$\frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{\left|V_{tb}\right|^2}{\left|V_{tb}\right|^2 + \left|V_{ts}\right|^2 + \left|V_{td}\right|^2}$$

and top-quark-pair-production cross section $\sigma_{t\bar{t}}~$ (integrated luminosity of 8.7 fb^{-1}) , assuming $|V_{tb}|>0.89$ CDF 2013

 $|V_{tb}| = 0.97 \pm 0.05$

Agreement with SM, and previous CDF, D0, CMS measurements $|V_{tb}| = 0.89 \pm 0.07$ (PDG 2012 average (includes single top))

possible to determine $|V_{tb}|$ directly without assuming unitarity

First observation by CDF and D0 in 2009;

With no assumptions on number of families or unitarity, but SM vertex + $|V_{tb}|^2 \gg |V_{ts}|^2 + |V_{td}|^2$

$$|V_{tb}| = 0.92_{-0.08}^{+0.10} \pm 0.05$$
 (th)

CDF Moriond 13

LHC takes Tevatron legacy limits (unconstrained/constrained 95% C.L.):

• CMS (8 TeV) $0.96 \pm 0.08_{(exp)} \pm 0.02_{(th)}$ / $81 < |V_{tb}| \le 1$ • ATLAS (8 TeV) $1.04_{-0.11}^{+0.10}(th + exp)$ / $80 < |V_{tb}| \le 1$

Moriond⁵13

If there were NP....

Relaxing unitarity (see also PMNS neutrino mixing matrix in Antush talk):

□Here simplest way: adding fermions

 ✓ vector-like quarks (in many models, e.g. Randall-Sundrum or E6 GUTS)
 Botella, Branco, Nebota 2012, Buras, Duling, Gori, 2009...

✓ more fermion generations Lacker et al 2012,...

✓ Generally coupling affected at order 5%

 Actual measurements about 8% precision: should nail it

Conclusions

