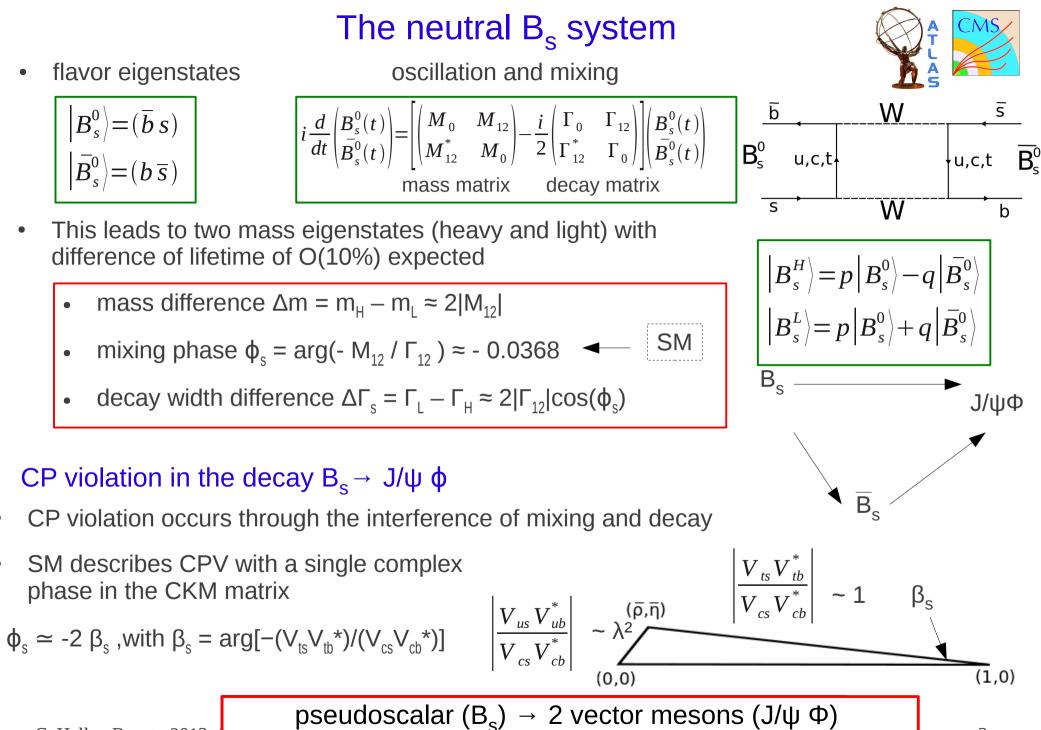
Measurement of Φ_s , $\Delta\Gamma_s$ and Lifetime in $B_s \rightarrow J/\psi \Phi$ at ATLAS and CMS

Claudio Heller Excellence Cluster Universe LMU München

For the ATLAS and CMS Collaborations

Beauty 2013 14th International Conference on B-Physics at Hadron Machines April 12th 2013, Bologna

Content

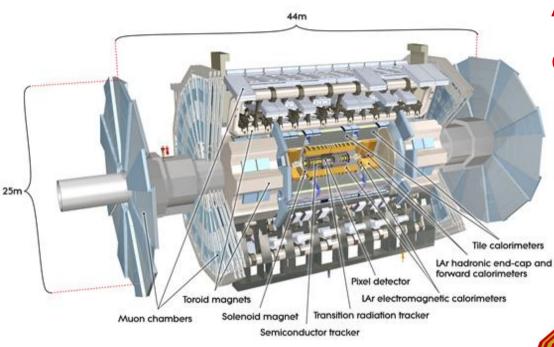

 CMS: Measurement of the B_s lifetime difference CMS-PAS-BPH-11-006

NEW!

• (Flavor tagged) time dependent angular analysis of the $B_s \rightarrow J/\psi \Phi$ decay and extraction of $\Delta\Gamma_s$ and weak phase ϕ_s in ATLAS (update of JHEP 12 (2012) 072)

Motivation

- Test predictions of the Standard Model
- $B_s \rightarrow J/\Psi\Phi$ is one of the channels that had the potential to show larger CP violation than predicted by the SM
- Measurement of the decay width difference $\Delta\Gamma_s$ provides constraints on the ratio $\Delta\Gamma_s/\Delta m$ which is free of most theoretical uncertainties



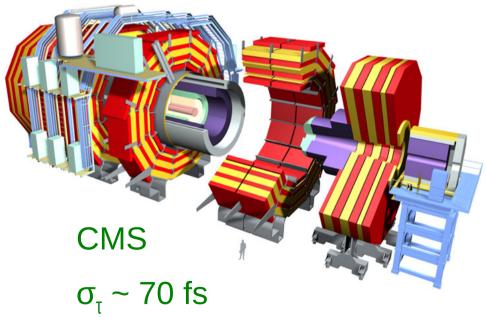
C. Heller, Beauty 2013,

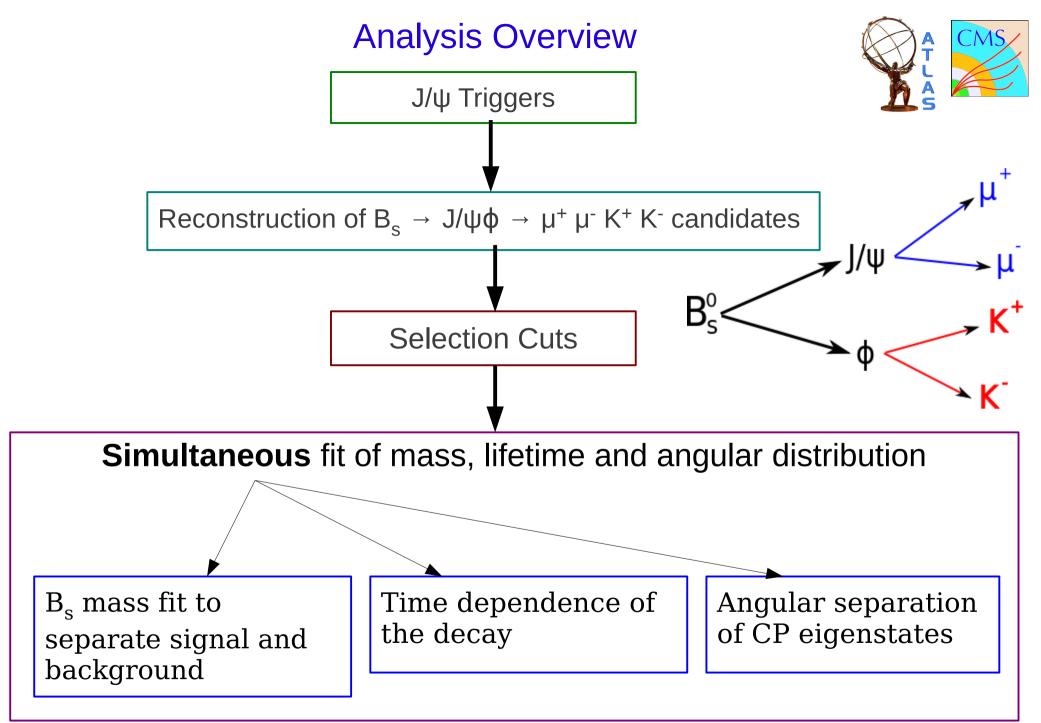
angular analysis is performed to disentangles CP states

3

The ATLAS and CMS Detectors

ATLAS and CMS provide good performance for B-physics:


- good p_T and vertex resolution
- high muon purity


$\sigma_{\tau} \sim 100 \text{ fs}$

 $B_s \rightarrow J/\psi \Phi$ analysis uses measurements provided by

- inner tracking detectors
- muon spectrometers

CMS Analysis

- 5.0 ± 0.1 fb⁻¹ collected in 2011 at \sqrt{s} = 7 TeV
- 19,200 B_s candidates in the mass range 5.24 -5.49 GeV with proper decay length between 0.02 – 0.3 cm
- Mass, decay time and three decay angles of the selected B_s candidates enter the fit
- Five-dimensional unbinned maximum likelihood fit of $\Delta\Gamma_s$, Γ_s , $|A_{\perp}|^2$, $|A_0|^2$, δ_{\parallel}
- $|A_{\parallel}|^2 = 1 |A_{\perp}|^2 |A_0|^2$
- Assumption of no CP violation: mixing phase Φ_{s} fixed to 0 in the fit
- Untagged analysis: all B_s candidates have equal probability to be particle or anti-particle
- S-wave component assumed to be negligible

C. Heller, Beauty 2013, 12.04.2013

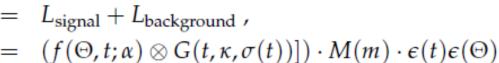
Event Selection / Reconstruction

J/ψ trigger:

- $\mu^{+} \mu^{-}$ pair with $p_{T}(\mu^{+} \mu^{-}) > 6.9 \text{ GeV}$
- common decay vertex with transverse decay length significance $L_{xy}/\sigma_{Lxy} > 3$
- invariant mass 2.8 3.35 GeV
- Distance of closest approach < 0.5 cm

J/ψ candidates:

- Each muon: $p_{T}(\mu) > 4 \text{ GeV}, |\eta| < 2.2$
- Dimuon mass within 150 MeV of J/ψ


Φ candidates:

- Pair of oppositely charged tracks with $p_T(K) > 0.7 \text{ GeV}$
- invariant mass with within 10 MeV of Φ

B_s candidates:

- Combination of J/ψ and Φ with invariant mass between 5.2 5.65 GeV
- χ^2 vertex fit probaility larger than 2 %

Components of the Likelihood Function

L_{background}

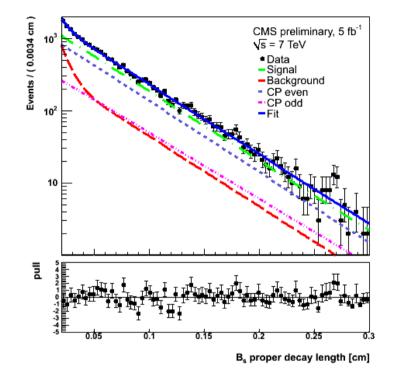
L_{signal}

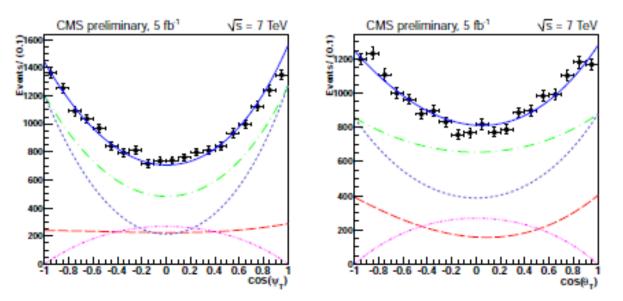
- $= (f(\Theta, t; \alpha) \otimes G(t, \kappa, \sigma(t))]) \cdot$ = $b(\Theta, t, m)$,
- Signal model
 - time and angles: differential decay rates
 - *M(m)*: sum of two Gaussians
 - proper decay time efficiency
 - angular efficiency
- Background model
 - mass: exponential
 - proper time: two Gaussians and two exponentials
 - angles: series of Legendre polynomials for $cos(\theta_{T})$ and $cos(\psi_{T})$ and a sinusoidal distribution for φ_{T}

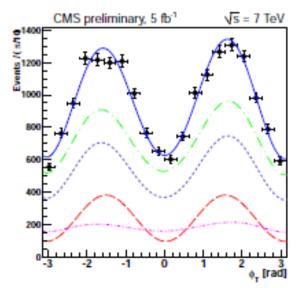
 $\begin{array}{c} 2200 \\ 2000 \\ 1800 \\ 1800 \\ 1400 \\ 1200 \\ 1000 \\ 1000 \\ 00$

Invariant mass J/ψ K⁺K⁻ [GeV]

Proper decay time efficiency is calculated from MC simulation as the ratio between selected signal events and generated events. Threshhold of $ct(B_s) > 0.02$ cm ensures stable and high efficiency.


Angular efficiency is determined from MC simulation. Angles are parametrized separately using Legendre polynomials. Correlations are neglected. 7


Fit Technique


CMS

Fit is performed in several steps

- Mean and narrower width of the two Gaussians are determined in a mass fit and kept fix for further steps.
- Parameters of the background angular model are fitted on data sideband distributions and kept fix for further steps.
- Mass lifetime fit on data with no selection on decay length significance is performed to determine a calibration scale factor for the proper decay time resolution
- Extended likelihood fit is performed taking into account signal and background PDFs

Result and Systematic Uncertainties

$$\Delta \Gamma_s = 0.048 \pm 0.024 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1}$$
,

 $\tau_{B_s} = 0.04580 \pm 0.00059 \text{ (stat.)} \pm 0.00022 \text{ (syst.) cm},$

 $|A_0|^2 = 0.528 \pm 0.010 \text{ (stat.)} \pm 0.015 \text{ (syst.)},$

$$|A_{\perp}|^2 = 0.251 \pm 0.013 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$$
 ,

 $\delta_{||} = 2.79 \pm 0.14 \text{ (stat.)} \pm 0.19 \text{ (syst.) rad}$.

14456 ± 140 signal events

Mean B_s Mass 5366.8 ± 0.1 MeV

Uncertainty source	$\Delta\Gamma_s [\mathrm{ps^{-1}}]$	<i>cτ</i> [cm]	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{ }$ [rad]
Signal PDF modeling					
Signal mass model	0.00072	0.00012	0.0022	0.0006	0.039
Proper time resolution	0.00170	0.00006	0.0007	0.0000	0.007
ϕ_s approximation	0.00000	0.00001	0.0000	0.0000	0.002
S-wave assumption	0.00109	0.00001	0.0130	0.0066	0.056
Background PDF modeling					
Background mass model	0.00019	0.00000	0.0000	0.0001	0.003
Background lifetime model	0.00040	0.00000	0.0001	0.0002	0.003
Peaking B^0 background	0.00025	0.00006	0.0002	0.0022	0.050
Background angular model	0.00175	0.00003	0.0001	0.0064	0.161
Limited simulation statistics					
Angular efficiency parameters	0.00019	0.00002	0.0057	0.0055	0.037
Temporal efficiency parameters	0.00000	0.00005	0.0000	0.0000	0.000
Temporal efficiency parametrization	0.00181	0.00014	0.0005	0.0007	0.001
Angular efficiency parametrization	0.00063	0.00003	0.0021	0.0086	0.007
Likelihood function bias	0.00000	0.00004	0.0004	0.0000	0.014
Total uncertainty	0.00341	0.00022	0.0146	0.0140	0.187

ATLAS Analysis with Flavor Tagging

- Update of untagged $B_s^{} \to J/\psi ~\Phi$ analysis published last year JHEP 12 (2012) 072
- 4.9 fb⁻¹ collected with the ATLAS detector in 2011 at $\sqrt{s} = 7$ TeV
- No cut on B_s proper lifetime
- S-wave component included
 - non-resonant decay B_s → J/ψ K⁺K⁻ & decay B_s → J/ψ f₀(K⁺K⁻) have same final state
 - S-wave state is CP odd and is described by an additional amplitude A_S and related strong phase δ_s
 - Normalization $|A_{//}|^2 + |A_{\perp}|^2 + |A_0|^2 + |A_s|^2 = 1$
- B_d reflections: final state pion is mis-reconstructed as a kaon
 - $B_d^0 \rightarrow J/\psi K^* (6.5 \pm 2.4) \% \& \text{ non-resonant } B_d^0 \rightarrow J/\psi K^* \pi^- (4.5 \pm 1.7) \%$
 - fractions, mass and angular shapes are determined from MC and fixed in the fit
- Initial state flavor tagging: muon & jet charge tag C. Heller, Beauty 2013, 12.04.2013

Flavor Tagging

- Analysis benefits from knowledge of initial flavor of signal decay
- Opposite side tagging: initial flavor of B_s is inferred from using information from the other B-meson that is typically produced from the bb pair
- Flavor tagging methods are studied and calibrated on $B^+ \rightarrow J/\psi K^+$ and $B^- \rightarrow J/\psi K^-$
- Tagging enters the fit as tag probability for B_s / \overline{B}_s

Muon Cone Charge Tagger

- additional muon ($p_T > 2.5$ GeV, $|\eta| < 2.5$) from semi-leptonic B-decay originating near the primary interaction ($\Delta z < 5$ mm)
- Muon cone charge variable of Inner Detector tracks ($p_T > 0.5$ GeV, $|\eta| < 2.5$) within a cone of $\Delta R < 0.5$ around muon momentum axis is used to derive tag probability

$$Q_{\mu} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}}$$

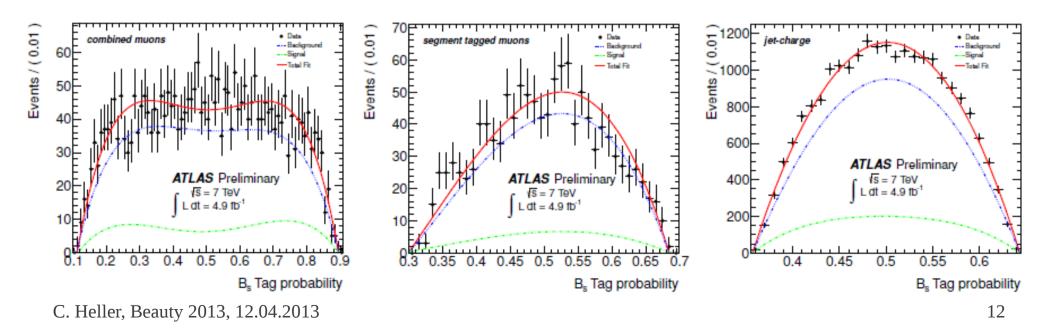
C. Heller, Beauty 2013, 12.04.2013
K = 1.1 (tuned to optimize tagging power)

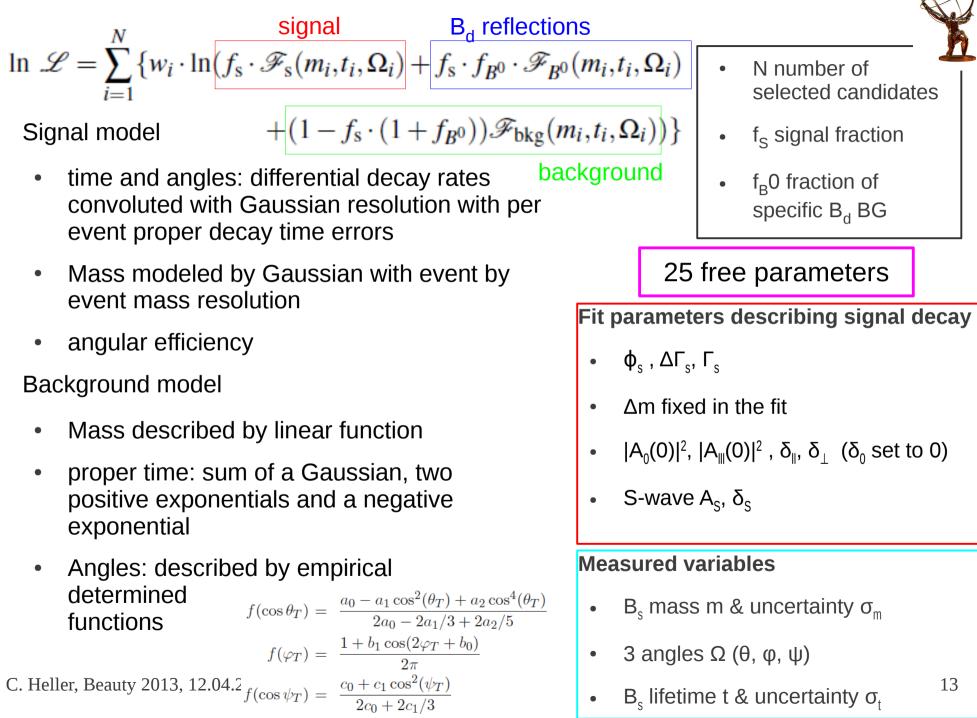
Jet Charge Tagger

- b-tagged anti-k_T jet with tracks associated to the same primary interaction as signal decay
- Veto signal decay tracks and jets within $\Delta R < 0.5$ around signal momentum axis
- tag probability is derived from jet charge of tracks in the jet with $\Delta R < 1.0$ around the jet momentum axis

$$Q_{\text{jet}} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}}$$

K = 1.1 (tuned to optimize tagging power)


Flavor Tagging


Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

- Combined muon: combination of Inner Detector track and Muon spectrometer track
- Segment Tagged muon: full Inner Detector track matched to track segment in the muon spectrometer

Tag probabilities

Unbinned Maximum Likelihood Fit

Results

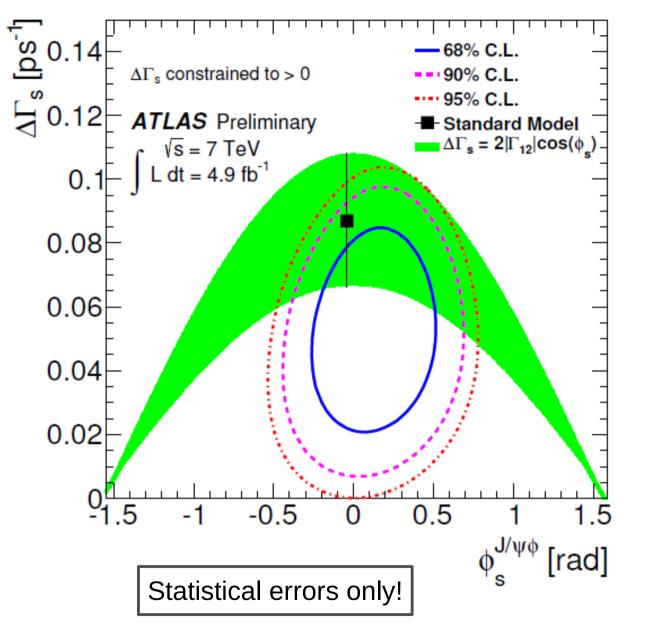
Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
$\phi_s(rad)$	0.12	0.25	0.11
$\Delta \Gamma_s(\text{ps}^{-1})$	0.053	0.021	0.009
$\Gamma_s(\mathrm{ps}^{-1})$	0.677	0.007	0.003
$ A_{\parallel}(0) ^2$	0.220	0.008	0.009
$ A_0(0) ^2$	0.529	0.006	0.011
$ A_{S} ^{2}$	0.024	0.014	0.028
δ_{\perp}	3.89	0.46	0.13
δ_{\parallel}	[3.	04-3.23]	0.09
$\delta_{\perp} - \delta_{S}$	[3.	02-3.25]	0.04

C. He

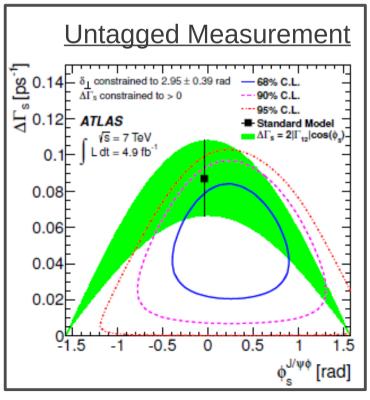
- 22670 \pm 150 signal B_s events
- consistent with untagged analysis
- Φ_s consistent with Standard Model
- S-wave amplitude is consistent with 0
- δ_{\parallel} and δ_{\perp} $\delta_{_S}$ are given as 1σ confidence level

Result of untagged measurement $\Phi_s = 0.21 \pm 0.41$ (stat.) ± 0.10 (syst.) rad

Correlation Table


	ϕ_s	$\Delta\Gamma$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_{S}$
ϕ_s	1.000	0.107	0.026	0.010	0.002	0.029	0.021	-0.043	-0.003
$\Delta\Gamma$		1.000	-0.617	0.105	0.103	0.069	0.006	-0.017	0.001
Γ_s			1.000	-0.093	-0.063	0.034	-0.003	0.001	-0.009
$ A_{ }(0) ^2$				1.000	-0.316	0.077	0.008	0.005	-0.010
$ A_0(0) ^2$					1.000	0.283	- 0.003	-0.016	-0.025
$ A_{S}(0) ^{2}$						1.000	-0.011	-0.054	-0.098
δ_{\parallel}							1.000	0.038	0.007
$\delta_{\perp}^{"}$								1.000	0.081
$\delta_{\perp} - \delta_S$									1.000

Systematic Uncertainties



Øs	$\Delta \Gamma_s$	Γ_{s}	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
(rad)	-		1-11/-11	10(-)1		(rad)	(rad)	(rad)
$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
$< 10^{-2}$	$< 10^{-3}$	0.002		$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$		$< 10^{-2}$
0.03	0.001			0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
0.10	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.002	0.05	$< 10^{-2}$	$< 10^{-2}$
		-	-		-	0.07		0.01
				0.001		0.03	0.04	0.01
								0.02
0.02	$< 10^{-3}$		0.001		0.002	0.04	0.02	0.01
0.01	0.001		0.001		0.002	0.01	0.02	0.02
0.02			0.008	0.009	0.027	0.06	0.07	0.03
0.11	0.009	0.003	0.009	0.011	0.028	0.13	0.09	0.04
Uncertainties of fit model derived in pseudo-experiment studies			Effect of residual misalignment studied in signal MC				00	
Uncertainty in the calibration of the tag probability fraction of B _d background								
	$<10^{-2}$ $<10^{-2}$ 0.03 0.10 $<10^{-2}$ $<10^{-2}$ $<10^{-2}$ 0.02 0.01 0.02 0.11 fit model experime	(rad) (ps^{-1}) $<10^{-2}$ $<10^{-3}$ $<10^{-2}$ $<10^{-3}$ 0.03 0.001 0.10 0.001 $<10^{-2}$ 0.002 $<10^{-2}$ 0.001 $<10^{-2}$ 0.001 0.02 $<10^{-3}$ 0.01 0.001 0.02 0.008 0.11 0.009	(rad)(ps ⁻¹)(ps ⁻¹) $<10^{-2}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-3}$ 0.002 0.03 0.001 $<10^{-3}$ 0.10 0.001 $<10^{-3}$ $<10^{-2}$ 0.002 $<10^{-3}$ $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-2}$ 0.001 $<10^{-3}$ 0.02 $<10^{-3}$ 0.001 0.02 $<10^{-3}$ 0.001 0.02 0.008 0.002 0.11 0.009 0.003 fit modelEffectexperimentEffectcertainty in the calibration	(rad)(ps ⁻¹)(ps ⁻¹) $<10^{-2}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-3}$ 0.002 $<10^{-3}$ 0.03 0.001 $<10^{-3}$ $<10^{-3}$ 0.10 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ 0.002 $<10^{-3}$ 0.003 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ 0.001 $<10^{-3}$ 0.001 0.02 $<10^{-3}$ 0.001 0.001 0.01 0.001 $<10^{-3}$ 0.001 0.02 0.008 0.002 0.008 0.11 0.009 0.003 0.009 fit modelEffect of residual misalignment studied in signalcertainty in the calibration	(rad) (ps^{-1}) (ps^{-1}) $<10^{-2}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-3}$ 0.002 $<10^{-3}$ $<10^{-3}$ 0.03 0.001 $<10^{-3}$ $<10^{-3}$ 0.005 0.10 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ 0.002 $<10^{-3}$ 0.003 0.002 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.001 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.001 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.001 $<10^{-2}$ 0.001 $<10^{-3}$ 0.001 $<10^{-3}$ 0.02 $<10^{-3}$ 0.001 $<10^{-3}$ 0.009 0.01 0.001 $<10^{-3}$ 0.009 0.011 fit modelEffect of residualmisalignmentstudied in signal MCUncertain	(rad) (ps^{-1}) (ps^{-1}) $<10^{-2}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-3}$ 0.002 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ 0.03 0.001 $<10^{-3}$ $<10^{-3}$ 0.005 0.001 0.10 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.006 $<10^{-2}$ 0.002 $<10^{-3}$ 0.003 0.002 0.006 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.02 $<10^{-3}$ 0.001 $<10^{-3}$ 0.002 0.02 $<10^{-3}$ 0.001 $<10^{-3}$ 0.002 0.02 0.008 0.002 0.008 0.002 0.01 0.001 $<10^{-3}$ 0.002 0.02 0.008 0.002 0.008 0.002 0.01 0.001 $<10^{-3}$ 0.002 0.02 0.008 0.009 0.027 0.11 0.009 0.003 0.009 0.011 0.028 Effect of residual misalignment studied in signal MCUncertainty in thecertainty in the calibrationUncertainty in the	(rad)(ps ⁻¹)(ps ⁻¹)(rad) $<10^{-2}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-2}$ $<10^{-3}$ 0.002 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ 0.03 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ 0.03 0.001 $<10^{-3}$ $<10^{-3}$ 0.005 0.001 0.02 0.10 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.006 0.07 $<10^{-2}$ 0.002 $<10^{-3}$ 0.003 0.002 0.006 0.07 $<10^{-2}$ 0.001 $<10^{-3}$ 0.003 0.002 0.006 0.07 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.066 0.02 $<10^{-3}$ 0.001 $<10^{-3}$ 0.002 0.066 0.02 $<10^{-3}$ 0.001 $<10^{-3}$ 0.002 0.044 0.01 0.001 $<10^{-3}$ 0.002 0.011 0.028 0.13 fit modelEffect of residual misalignment studied in signal MCUncertainty in selection effcertainty in the calibrationUncertainty in the relative	(rad) (ps^{-1}) (ps^{-1}) (rad)(rad) $<10^{-2}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-2}$ $<10^{-2}$ $<10^{-3}$ 0.002 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-2}$ 0.03 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ $<10^{-2}$ $<10^{-2}$ 0.10 0.001 $<10^{-3}$ $<10^{-3}$ $<10^{-3}$ 0.002 0.05 $<10^{-2}$ $<10^{-2}$ 0.002 $<10^{-3}$ $<10^{-3}$ 0.002 0.006 0.07 0.01 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.006 0.07 0.01 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.066 0.07 0.01 $<10^{-2}$ 0.001 $<10^{-3}$ $<10^{-3}$ 0.002 0.066 0.02 0.02 $<10^{-3}$ 0.001 $<10^{-3}$ 0.002 0.04 0.02 0.02 0.008 0.002 0.008 0.009 0.027 0.06 0.07 0.11 0.009 0.003 0.009 0.011 0.028 0.13 0.09 fit modelEffect of residualmisalignmentstudied in signal MCUncertainty in triggercertainty in the calibrationUncertainty in the relativeUncertainty in the relative

Likelihood Contour in $\phi_s - \Delta \Gamma$ plane

- ATLAS
- Uncertainty of Φ_s
 improved by ~40 % compared to untagged analysis
- ΔΓ_s central value and uncertainty unchanged

Summary

• CMS has measured average lifetime and decay width difference in an untagged angular analysis of $B_s \rightarrow J/\psi \Phi$ of 2011 data assuming $\Phi_s = 0$

 $\Delta\Gamma_{s} = 0.048 \pm 0.024 \text{ (stat.)} \pm 0.003 \text{ (syst.)}$ $\tau_{B_{s}} = 0.04580 \pm 0.00059 \text{ (stat.)} \pm 0.00022 \text{ (syst.)}$

Derived from τ_{B_s} : $\Gamma_s = 0.655 \pm 0.008$ (stat.) ± 0.003 (syst.) ps⁻¹

• ATLAS updated the $B_s \rightarrow J/\psi \Phi$ analysis of 2011 data using muon and jet charge tagging improving the precision of the Φ_s measurement

 $\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad}$ $\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.) ps}^{-1}$ $\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1}$

Backup

Differential Decay Rate in CMS Analysis

$$\frac{d^4\Gamma(B_s(t))}{d\Theta dt} = f(\Theta, t; \alpha) = \sum_{i=1}^6 O_i(\alpha, t) \cdot g_i(\Theta)$$

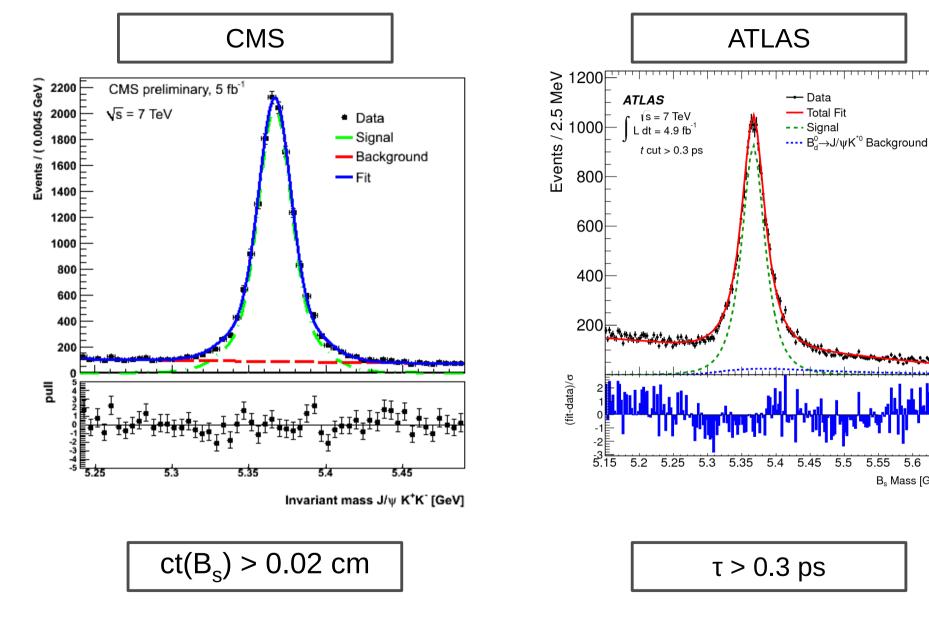
time-dependent part

angular part

- $g_{1} = 2\cos^{2}(\psi_{T})(1 \sin^{2}(\theta_{T})\cos^{2}(\varphi_{T})),$ $g_{2} = \sin^{2}(\psi_{T})(1 \sin^{2}(\theta_{T})\sin^{2}(\varphi_{T})),$ $g_{3} = \sin^{2}(\psi_{T})\sin^{2}(\theta_{T}),$ $g_{4} = -\sin^{2}(\psi_{T})\sin^{2}(2\theta_{T})\sin(\varphi_{T}),$ $g_{5} = \frac{1}{\sqrt{2}}\sin(2\psi_{T})\sin^{2}(\theta_{T})\sin(2\varphi_{T}),$ $g_{6} = \frac{1}{\sqrt{2}}\sin(2\psi_{T})\sin(2\theta_{T})\sin(\varphi_{T}).$ C. Heller, Beauty 2013, 12.04.2013
- With the assumption fo no CPV ($\Phi_s = 0$) terms $O_4 \cdot g_4$ and $O_6 \cdot g_6$ are zero.
- S-wave component is assumed to be negligible
- Untagged: equal probability for B_s / \overline{B}_s

Differential Decay Rate in ATLAS Analysis

$$\frac{d^4\Gamma}{dt\ d\Omega} = \sum_{k=1}^{10} \mathscr{O}^{(k)}(t) g^{(k)}(\theta_T, \Psi_T, \varphi_T)$$


time-dependent part

angular part

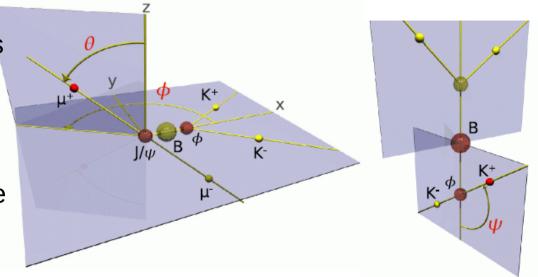
		• •	<u> </u>
СР	<u>k</u>	$\mathscr{O}^{(k)}(t)$	$g^{(k)}(oldsymbol{ heta}_T,oldsymbol{\psi}_T,oldsymbol{\phi})$
+1	1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\varphi_T)$
+1	2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\varphi_T)$
-1	3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
	4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\varphi_T$
Interference terms		$\left[\left(1 + \cos\phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 - \cos\phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
Len	5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$\sin^2 \psi_T \sin 2\theta_T \sin \varphi_T$
rfe IS		$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
ern	6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \varphi_T$
= =		$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	• -
	7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin\theta_T\cos^2\varphi_T\right)$
b	8	$ A_{S} A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t}-e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\varphi_T$
av		$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	-
S-wave terms	9	$\frac{1}{2} A_S A_{\perp}(0) \sin(\delta_{\perp}-\delta_S) $	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\varphi_T$
S Ħ		$\left[(1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
	10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\varphi_T\right)$
		$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

Mass Projection Comparison With Cut

5.5

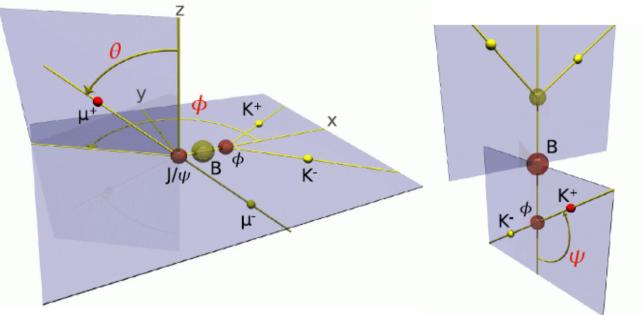
5.55

5.6


B_s Mass [GeV]

5.65

Measurement of CPV in the $B_s \rightarrow J/\psi \phi$ Decay


- B_s (pseudoscalar with spin 0) decays into 2 vector mesons with spin 1
- Conservation of total angular momentum leads to three different values of relative orbital angular momentum between J/ ψ and φ
 - L = 0 & L = 2: even CP eigenstates (~75 %)
 - L = 1: odd CP eigenstate (~25 %)
- Final state $J/\psi \phi$ is a mixture of CP even and CP odd eigenstates
- An angular analysis is used to determine 3 transversity amplitudes and 3 strong phases that define the three states
- CP state is determined from the angular distribution of the final state particles μ⁺ μ⁻ K⁺ K⁻ in the transversity basis

Coordinate system in the transversity basis

The x-axis is determined by the direction of the Φ meson in the J/ ψ rest frame. The K⁺K⁻-plane defines the xy-plane, where p_v(K+) > 0.

- θ is the angle between $p(\mu^{\scriptscriptstyle +})$ and the xy plane in the J/ ψ meson rest frame
- Φ is the angle between the x- axis and $p_{xy}(\mu^+)$, the projection of the μ + momentum in the xy plane, in the J/ ψ meson rest frame
- ψ is the angle between $p(K^{+})$ and $-p(J/\psi)$ in the Φ meson rest frame

Event Selection / Reconstruction

ID tracks: \geq 1 hits in Pixel and \geq 4 hits in SCT detector

Muon tracks: both combined (ID+muon track) and tagged (ID only), no explicit pT cut applied; muon track parameters taken from ID alone (ID precision dominates at low p_T)

$J/\psi \to \mu \mu$ candidates selection:

- vertex fit $\chi^2/NDF < 10$
- 3 invariant mass windows for both muons in barrel (BB), both in endcap (EE), or combination (EB):
 - BB: 2989 < m(J/ψ) < 3199 MeV
 - EB: 2944 < m(J/ψ) < 3242 MeV
 - EE: 2827 < m(J/ψ) < 3357 MeV
 - windows retaining 99.8% of the signal

$\phi \rightarrow KK \text{ candidates selection:}$

- mass: 1009 < m(φ) < 1031 MeV
- K[±] transverse mom. > 1 GeV

B_s candidates selection:

- vertex fit of all the 4 tracks, with muons pair constrained to J/ψ PDG mass
- all 4 tracks vertex fit χ^2/NDF < 3.0
- B-candidate proper lifetime error $\delta \tau_i < 0.3 \text{ ps}$
- no attempt for K/π identification
- if more B-candidates are found in an event, only the one with the lowest vertex fit χ^2 /NDF is kept

Trigger Bias

- the muon trigger biases the transverse impact parameter of muons toward smaller values
- trigger selection efficiency was measured in data and MC simulation using a tagand-probe method
- re-weighting of the events with a factor depending on the measured ${\rm B}_{\rm s}$ lifetime before the correction
- ε = 0.013 ± 0.004 ps

$$w = e^{-|t|/(\tau_{\rm sing} + \epsilon)} / e^{-|t|/\tau_{\rm sing}}$$

- ϵ is determined using MC events by comparing the B_s lifetime of an unbiased sample with the lifetime obtained after including the dependence of the trigger efficiency on the muon transverse impact parameter as measured from the data
- uncertainty reflects the precision of the tag-and-probe method and is used to assign a systematic

Acceptance

- four dimensional binned acceptance method
- event-by-event efficiency according to the transversity angles (θ_T , ψ_T , ϕ_T) and the p_T of the B_s
- Takes into account
 - detector sculpting
 - trigger efficiency
 - reconstruction
 - selection cuts
- acceptance maps are calculated from $\mathsf{B}_{_S} \to J/\psi \; \varphi \; \mathsf{MC}$ events
- is treated as an angular sculpting PDF
- Multiplied to signal time- and angular-dependent PDF
- Taken into account in the normalization
- Effect of variation of the bins is negligible (systematic check)

Tag Probability

- P(B|Q): Probability to identify the flavor of the signal B meson as B_S
- $P(\overline{B}|Q) = 1 P(B|Q)$: probability for \overline{B}_S
- Q is discriminating variable
- The samples of B⁺ and B⁻ are used to extract and calibrate the probability distribution

$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

- For comparison of the different tagging methods the following quantities are defined:
 - Efficiency $\epsilon = N_{\rm tagged}/N_{\rm Bcandidates}$
 - Tagging Power $\epsilon D^2 = \sum_i \epsilon_i D_i^2$ • Effective Dilution $D_i = 2P(B|Q) - 1$ $D = \sqrt{\frac{\epsilon D^2}{\epsilon}} = \sqrt{\frac{\sum_i \epsilon_i D_i^2}{\sum_i \epsilon_i}}$ Heller Beauty 2013, 12.04 2013

