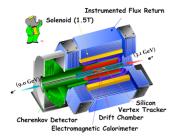
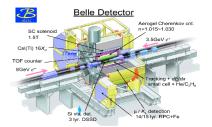
BABAR /Belle Heavy hadron production and decays, including Y(4260), Y(4350) and Y(4660) states

Elisa Fioravanti

INFN Ferrara On behalf of the BABAR Collaboration


14th International Conference on B-Physics at Hadron Machines Bologna - Italy 08-12th April 2013



Outline

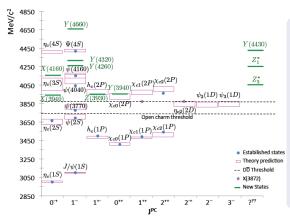
- BABAR and Belle experiments
- Charmonium spectrum
- Study of the J/ ψ ω final state in two-photon collisions PRD 86, 072002 (2012) BABAR Collaboration
- Y(4260) BABAR and Belle; new results from BES III
- Y(4350) Y(4660) BABAR and Belle
- Search for C-odd partner of X(3872) Preliminary Belle Collaboration
- $e^+e^-
 ightarrow J/\psi\eta$ via ISR arXiv: 1210.7550 Belle Collaboration
- Conclusion

The BABAR and Belle experiments

Features

- Very large samples of $\Upsilon(nS)$ and B mesons. - Very large samples of charm mesons and

charmonium

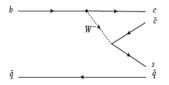

- $\sigma(e^+e^-
ightarrow car{c}) \sim 1.3$ nb

- charmonium in B meson decays, ISR production, double charmonium and $\gamma\gamma$ production.

- Low multiplicity, can reconstruct complete events.

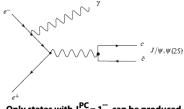
	Belle	BABAR
$\Upsilon(5S)$	$121 { m ~fb^{-1}}$	-
(4 <i>S</i>)	$711 { m ~fb^{-1}}$	433 fb $^{-1}$
Ƴ(3 <i>S</i>)	$3.0 \ {\rm fb}^{-1}$	30 fb^{-1}
↑(2 <i>S</i>)	24 fb $^{-1}$	14 fb^{-1}
$\Upsilon(1S)$	$5.7 \ {\rm fb}^{-1}$	-
Off-Res	87 fb $^{-1}$	54 fb $^{-1}$
Scan	68 fb^{-1}	$3.9 \text{ fb}^{-1}[1]$
Total	$1020 \ {\rm fb}^{-1}$	535 fb^{-1}
[1] PRL 102, 012001(2009) = ► = ∽ ۹		

Charmonium spectrum

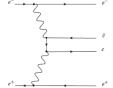

- Below the $D\overline{D}$ threshold, all expected states have been observed, with properties in good agreement with theory; there are no additional states.

- Many unexpected states have been reported above the $D\overline{D}$ threshold, seemingly too many with $J^{PC} = 1^{--}$. Several exotic hypotheses about their nature: tetraquarks, hadronic molecules, hybrids, glueballs, hadro-quarkonia.

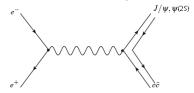
- These result mainly from Belle and $B\!A\!B\!A\!R$, with significant contributions also from CDF, D0, CLEO, LHCb, ATLAS, CMS and BES


Experimental methods for charmonium production at the B-factories

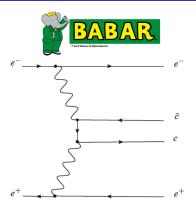
B meson decays


States of any quantum numbers can be produced

Initial State Radiation (ISR)


Only states with J^{PC} = 1⁻⁻ can be produced

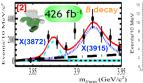
Two-photon production

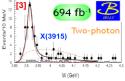

Only states with $J^{PC} = 0^{\pm +}, 2^{\pm +}, 4^{\pm +}, \dots, 3^{++}, 5^{++}, \dots$ can be produced

Double charmonium production

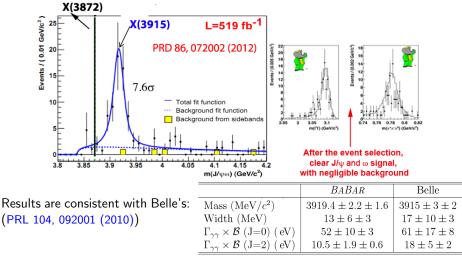
Only charmonium states with C=+1 are allowed to be produced in association with the J/w or the w(2S)

Study of the $J/\psi~\omega$ final state in two-photon collisions


Study of the $J/\psi \ \omega$ final state in two-photon collisions (519 fb⁻¹) PRD 86, 072002 (2012)


$\gamma\gamma \rightarrow J/\psi~\omega$ - Motivation

Confirm the X(3915) and search for the X(3872).

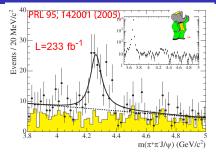

X(3915) X(3872) The X(3915) was seen by both Belle [1] • The $X(3872) \rightarrow J/\psi \omega$ was seen in B and BABAR [2] in $B \rightarrow X(3915)K$, with decays by BABAR [2], and Belle [4] $X(3915) \rightarrow J/\psi \omega$ The possible X(3872) quantum numbers Belle also observed the X(3915) in could be $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ [5]. $\gamma\gamma \rightarrow X(3915) \rightarrow J/\psi \ \omega$ [3] Recent LHCb results seems to favor Previous Belle and BABAR analyses of strongly $J^{PC} = 1^{++}$ [6]. two-photon production in $D\bar{D}$ • $\gamma \gamma \rightarrow X(3872)$ would imply $J^{PC} = 2^{-+}$ established the existence of a $J^{PC} = 2^{++}$ state in the 3.92-3.93 GeV • $\gamma \gamma \rightarrow X(3872)$ is not seen in Belle's region which is interpreted as the spectrum. $\chi_{c2}(2P)$ state.

Belle PRL 94,182002 (2005)
 BABAR PRD 82,011101(R) (2010)
 Belle PRL 104,092001 (2010)
 Belle arXiv:0505037
 CDF PRL 98,132002 (2007)
 LHCb arXiv:1302.6269 (2013)

$\gamma\gamma ightarrow J/\psi \ \omega$ - Results

New limit: $\Gamma_{\gamma\gamma}(X(3872)) \times B(X(3872) \rightarrow J/\psi \ \omega)(J=2) < 1.7 \text{ eV}$ X(3915) quantum number determination: $J^P = 0^+$ favored by BABAR

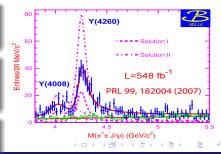
▶ < ≣ ▶


Y(4260)

Y(4260)

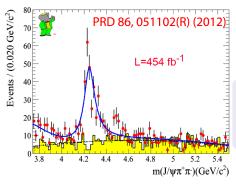
<ロ> <同> <同> <同> < 同> <

Y(4260)



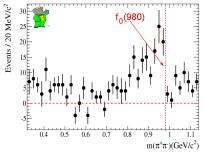
Y(4260) was discovered in the ISR process $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi \pi^+\pi^-$ by BABAR PRL 95,142001 (2005).

$$\begin{split} \mathsf{M}(Y(4260)) &= 4259 \pm 8^{+2}_{-6} \; \mathsf{MeV} \\ \mathsf{\Gamma}(Y(4260)) &= 88 \pm 23^{+6}_{-4} \; \mathsf{MeV} \\ \mathsf{\Gamma}_{e^+e^-} \times B(\pi^+\pi^- J/\psi) &= 5.5 \pm 1.0^{+0.8}_{-0.7} \; \mathsf{MeV} \end{split}$$


It was confirmed by Belle PRL 99,182004 (2007). They observed an additional structure the Y(4008)

 $M(Y(4260)) = 4263 \pm 6 \text{ MeV}$ $\Gamma(Y(4260)) = 126 \pm 18 \text{ MeV}$ $\Gamma_{e^+e^-} \times B(\pi^+\pi^- J/\psi) = 9.7 \pm 1.1 \text{ MeV}$ $M(Y(4008)) = 4008 \pm 40^{+114}_{-28} \text{ MeV}$ $\Gamma(Y(4008)) = 226 \pm 44 \pm 87 \text{ MeV}$

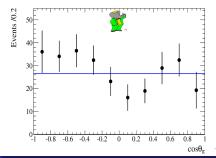
• New analysis from *BABAR* : more precise measurements of Y(4260) parameters in $J/\psi \pi^+\pi^-$ ISR production PRD 86, 051102(R) (2012)


An extendend-maximum-likelihood fit is performed to the signal region $J/\psi\pi^+\pi^-$ distribution and simultaneously to the background distribution in the region 3.74-5.5 GeV/c².

Mass $(Y(4260)) = 4244\pm5\pm4 \text{ MeV}/c^2$ $\Gamma(Y(4260))=114^{+16}_{-15}\pm7 \text{ MeV}$

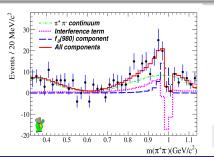
 $\Gamma_{e^+e^-} \times B(J/\psi \pi^+\pi^-) = 9.2 \pm 0.8 \pm 0.7 \text{ eV}$

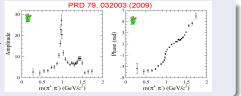
No evidence for the state at ${\sim}4~\text{GeV}/\text{c}^2$ reported by Belle.


$\pi^+\pi^-$ Invariant mass distribution in the Y(4260) decay (1)

- The π⁺π⁻ system has C=+1 and hence even angular momentum.
- Define θ_π as the angle between the π⁺ direction and that of the recoil J/ψ both in the dipion rest frame.
- The distribution, which must be symmetric, is consistent with S-wave behaviour (blue line) $\chi^2/NDF = 12.3/9$; probability=19.7%.

For 4.15
$$\leq$$
 $m(J/\psi\pi^+\pi^-)$ \leq 4.45 GeV/c²

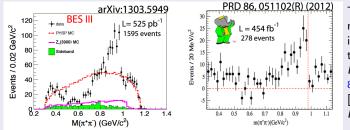

- The distribution seems to peak around the $f_0(980)$ mass; however the peak is displaced from the indicated $f_0(980)$ position.
- The fact that the peak is displaced suggests possible interference between the $f_0(980)$ and an $m(\pi^+\pi^-)$ contribution.



$\pi^+\pi^-$ Invariant mass distribution in the Y(4260) decay (2)

A simple model has been used to describe the $\pi^+\pi^-$ mass distribution, namely the square of an amplitude consisting of the coherent sum of a nonresonant component motivated by a QCD multipole expansion and an $f_0(980)$ amplitude; the relative strength and phase of these components are free to vary in the fit to the data.

The mass-dependence of the $f_0(980)$ amplitude and phase is from the BABAR analysis of the decay $D_s^+\to\pi^+\pi^-\pi^+$

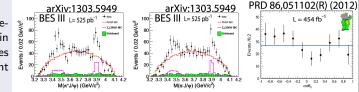

Using this simple model, a good description of the $\pi^+\pi^-$ mass distribution is obtained.

This indicates that there is an $f_0(980)$ contribution to the decay of the Y(4260) to $J/\psi\pi^+\pi^-$ but that contribution is not dominant.

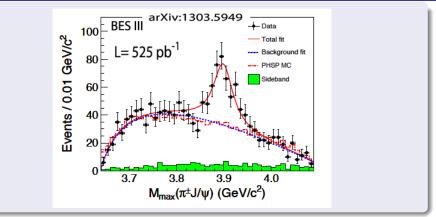
$$\frac{B(Y_{4260} \rightarrow J/\psi f_0(980), f_0(980) \rightarrow \pi^+ \pi^-)}{B(Y_{4260} \rightarrow J/\psi \pi^+ \pi^-)} = (17 \pm 13)\%$$

New analysis coming from BES III: arXiv:1303.5949 (1)

They reported a study of the process $e^+e^-
ightarrow \pi^+\pi^- J/\psi$ at $\sqrt{s}{=}4.260~{
m GeV}$



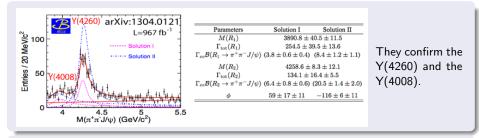
Their $\pi^+\pi^-$ invariant mass distribution is very similar to that obtained in the *BABAR* analysis PRD 86,051102(R) (2012) [but BES III ~ 6× *BABAR* in statistics].


BES shows phase space MC projections on their plots although it is clear that the dipion mass distribution differs significantly from PS.

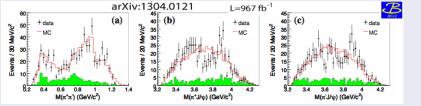
The BES $J/\psi\pi$ mass distributions imply structure in $\cos\theta_{\pi}$

The BABAR distribution may reflect this, but within the large uncertainties it is also consistent with being flat.

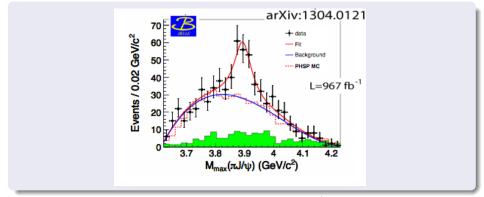
New analysis coming from BES III: arXiv:1303.5949 (2)


They observe a new structure around 3.9 GeV/c² in the $\pi^{\pm}J/\psi$ mass spectrum, which they refer to as the $Z_c(3900)$.

$$\begin{array}{c} \mathsf{M}(Z_c(3900)) = 3899.0 \pm 3.6 \pm 4.9 \ \mathsf{MeV/c^2} \\ \mathsf{\Gamma}(Z_c(3900)) = 46 \pm 10 \pm 20 \ \mathsf{MeV} \end{array}$$


For additional details see Yaqian Wang's talk. (10th April)

New analysis coming from Belle: arXiv:1304.0121 (1)


They reported a study of the process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ with 967 fb⁻¹ collected at $\Upsilon(nS)$ (n=1,2,...,5)

They show the $m(\pi^+\pi^-)$ and $m(\pi^\pm J/\psi)$ distributions which are consistent with the BES results (arXiv:1303.5949).

New analysis coming from Belle: arXiv:1304.0121 (2)

They observe a new structure around 3.9 GeV/c² in the $\pi^{\pm}J/\psi$ mass spectrum, which they refer to as the $Z_c(3895)$ with 5.2 σ significance.

 $\begin{array}{c} \mathsf{M}(Z_c(3895)) = 3894.5 \pm 6.6 \pm 4.5 \ \mathsf{MeV}/\mathsf{c}^2 \\ \mathsf{\Gamma}(Z_c(3895)) = 63 \pm 24 \pm 26 \ \mathsf{MeV} \end{array}$

The results are consistent with the BES analysis (arXiv:1303.5949).

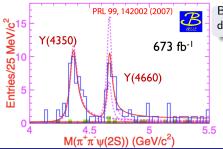
- $J^{PC} = 1^{--}$ because it is directly produced in the e^+e^- annihilation
- $Y(4260) \rightarrow J/\psi \pi^0 \pi^0$ decay mode indicates I=0 PRL 96, 162003 (2006)
- Not observed in $Y(4260) \rightarrow \psi(2S)\pi^+\pi^-$ decays
- No observed decay to $D^* \overline{D}^*$ nor to $D_s^* \overline{D}_s^*$ so that its properties do not lend themselves to a simple charmonium interpretation
- BES III and Belle have reported the existence of a narrow resonant structure in the $J/\psi\pi$ sub-system at ~3.9 GeV/c² which would correspond to an isovector four-quark state BES: arXiv:1303.5949; Belle: arXiv:1304.0121;
- Other interpretations:

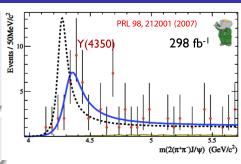
- four- quark state (PRD 72, 114016 (2005)). If the Y(4260) is a four-quark state it is expected to decay to $D_s^+ \overline{D}_s^-$ but this has not been observed (PRD 82, 052004 (2010)).

- baryonium state (J. Phyd. G 35, 075008 (2008))
- hybrid state (PL B 625, 212 (2005)).

(日)

Y(4350) - Y(4660)

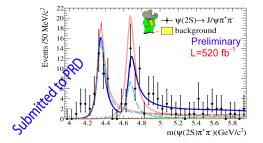



Y(4350) - Y(4660)

Y(4350) - Y(4660)

BABAR searched for the Y(4260) by the chain: $e^+e^- \rightarrow Y(4260) \rightarrow \psi(2S)\pi^+\pi^- \rightarrow J/\psi\pi^+\pi^-$ via ISR without finding evidence of signal PRL 98, 212001 (2007), but in the same final state discovered a new state, the Y(4350)

$$\begin{split} & {\sf Mass}\;({\sf Y}(4325))=4324\,\pm\,24\;{\sf MeV/c^2}\\ & {\sf F}({\it Y}(4325))=172\pm33\;{\sf MeV/c^2} \end{split}$$



Belle confirmed the Y(4350) state and discovered the Y(4660) PRL 99, 142002 (2007)

Parameters	Solution I	Solution II
M(Y(4360))	4361 ±	9 ± 9
$\Gamma_{tot}(Y(4360))$	74 ± 1	5 ± 10
$\mathcal{B}\Gamma_{e^+e^-}(Y(4360))$	$10.4 \pm 1.7 \pm 1.5$	$11.8 \pm 1.8 \pm 1.4$
M(Y(4660))	4664 ±	11 ± 5
$\Gamma_{tot}(Y(4660))$	$48 \pm 15 \pm 3$	
$\mathcal{B}\Gamma_{e^+e^-}(Y(4660))$	$3.0 \pm 0.9 \pm 0.3$	$7.6 \pm 1.8 \pm 0.8$
φ	$39 \pm 30 \pm 22$	$-79 \pm 17 \pm 20$

Y(4350) - Y(4660)

• BABAR update arXiv:1211.6271 using the full dataset, including $\Upsilon(2S)$ and $\Upsilon(3S)$

Parameters	First Solution	Second Solution
	[constructive	[destructive
	interference]	interference]
Mass $Y(4360)(MeV/c^2)$	4340 ±	16 ± 9
Width Y(4360)(MeV)	94 ± 3	32 ± 13
$\mathcal{B} \times \Gamma_{ee}(Y(4360))(eV)$	$6.0 \pm 1.0 \pm 0.5$	$7.2 \pm 1.0 \pm 0.6$
Mass $Y(4660)(MeV/c^2)$	$4669 \pm$	21 ± 3
Width Y(4660)(MeV)		48 ± 10
$\mathcal{B} \times \Gamma_{ee}(Y(4660))(eV)$	$2.7 \pm 1.3 \pm 0.5$	$7.5 \pm 1.7 \pm 0.7$
$\phi(^{\circ})$	$12 \pm 27 \pm 4$	$-78 \pm 12 \pm 3$

arXiv:1211.6271

Parameters	First Solution [constructive interference]	Second Solution [destructive interference]
		10.1.0
Mass Y(4360)(MeV/ c^2)	$4340 \pm$	16 ± 9
Width Y(4360)(MeV)	94 ± 3	32 ± 13
	$6.0\pm1.0\pm0.5$	$7.2 \pm 1.0 \pm 0.6$
$Mass Y(4660)(MeV/c^2)$	$4669 \pm$	21 ± 3
Width $Y(4660)(MeV)$		48 ± 10
$\mathcal{B} \times \Gamma_{ee}(Y(4660))(eV)$	$2.7 \pm 1.3 \pm 0.5$	$7.5 \pm 1.7 \pm 0.7$
$\phi(^{\circ})$	$12 \pm 27 \pm 4$	$-78 \pm 12 \pm 3$

FRE 99, 142002 (2007)		
Parameters	Solution I	Solution II
M(Y(4360))	4361 ±	9 ± 9
$\Gamma_{tot}(Y(4360))$	74 ± 12	5 ± 10
$\mathcal{B}\Gamma_{e^+e^-}(Y(4360))$	$10.4 \pm 1.7 \pm 1.5$	$11.8 \pm 1.8 \pm 1.4$
M(Y(4660))	4664 ±	11 ± 5
$\Gamma_{tot}(Y(4660))$	48 ± 1	5 ± 3
$\mathcal{B}\Gamma_{e^+e^-}(Y(4660))$	$3.0 \pm 0.9 \pm 0.3$	$7.6 \pm 1.8 \pm 0.8$
φ	$39\pm30\pm22$	$-79\pm17\pm20$

Image: A math a math

PRL 99, 142002 (2007)

- $J^{PC} = 1^{--}$ because they are directly produced in the e^+e^- annihilation
- They have been observed only in ISR $\psi(2S)\pi^+\pi^-$ production.
- Why are there states decaying into 2^3S_1 and not to 1^3S_1 ?
- One possible interpretation is hadro-charmonium states
 - M. B. Voloshin arXiv:0711.4556
 - Dubynsky & Voloshin PLB 671 (2009) 82

Search for C-odd partner of X(3872)

Search for C-odd partner of X(3872) Preliminary results

Elisa Fioravanti 24

Search for C-odd partner of X(3872)

- Earlier search for tetraquark charged partner of the X(3872), but no signal was seen (PRD 84, 052004 (2011)) - If the X(3872) is a tetraquark, its C-odd partner can decay into $\chi_{c1,c2}\gamma$

• $B \rightarrow K + \gamma \chi_{c1}$: no X(3872) signal observed - $\mathcal{B}(B^+ \rightarrow X(3872)K^+) \times \mathcal{B}(X \rightarrow \gamma \chi_{c1}) < 2.0 \times 10^{-6}$ @ 90% C.L. - $\mathcal{B}(X \rightarrow \gamma \chi_{c1}/B \rightarrow J/\psi \pi^+ \pi^-) < 0.26$ @ 90% C.L.

• but, what is the peak at $M_{\gamma\chi_{c1}} \sim 3.82$ GeV? A new charmonium state observed? This new state seems to be the missing ψ_2 from the charmonium spectrum

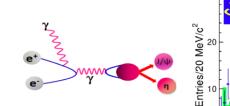
 $M(\chi_{c1}\gamma)$

Evidence for $\psi_2 \rightarrow \chi_{c1} \gamma$

- $\psi_2 \rightarrow \chi_{c1} \gamma$ was predicted
- Godfrey & Isgur, PRD 32, 189 (1985): Prediction of a state $1^3D_2(3840)$ with $J^{PC} = 2^{--}$
- Eichten et al., PRL 89 162002 (2002) & PRD 69, 094019 (2004), prediction of a mass of 3831 MeV/c² and $\Gamma(\psi_2 \rightarrow \chi_{c1}\gamma) = 260$ keV
- No analysis defining I, J or P

- First ψ_2 evidence
- ψ_2 significance is 4.2 σ including systematics
- $\Gamma(\psi_2) = 4 \pm 6$ MeV from the fit

$e^+e^- \rightarrow J/\psi\eta$ via ISR arXiv: 1210.7550


< fi> < fi> < i ≥ </p>

$e^+e^- \rightarrow J/\psi\eta$ via ISR

Previous measurements:

- CLEO Phys. Rev. Lett. 96, 162003 (2006) (L=281 pb⁻¹)
- BESIII Phys. Rev. D 86, 071101 (2012) (L=478 pb⁻¹))

30

Parameters	Solution I	Solution II
$M_{\psi(4040)}$	4039 (fixed)	
$\Gamma_{\psi(4040)}$	80 (fixed)	
$\mathcal{B} \cdot \Gamma_{e^+e^-}^{\psi(4040)}$	$4.8\pm0.9\pm1.4$	$11.2 \pm 1.3 \pm 1.9$
$M_{\psi(4160)}$	4153 (fixed)	
$\Gamma_{\psi(4160)}$	103 (fixed)	
$\mathcal{B} \cdot \Gamma_{e^+e^-}^{\psi(4040)}$	$4.0\pm0.8\pm1.4$	$13.8\pm1.3\pm2.0$
ϕ	$336 \pm 12 \pm 14$	$251\pm4\pm7$

- First time $\psi(4040)$ and $\psi(4160)$ have been observed in final states not involving charm meson pair - No signal from Y(4260), Y(4360), Y(4660)

4.25

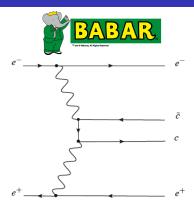
 $M(\eta J/\psi)$ (GeV/c²)

4

arXiv: 1210.7550

980 fb⁻¹

4.75

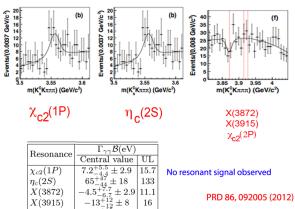

28

- Quarkonium spectroscopy is a very interesting field, many new exotic states have been discovered in recent years;
- New exciting results are still coming from BABAR, Belle and also from BES III;
- Still many missing pieces need to be found to have the full picture.

THANKS FOR YOUR ATTENTION

BACKUP SLIDES

Search for resonances decaying into $\eta_c \pi^+ \pi^-$ using two-photon interactions



Search for resonances decaying into $\eta_c \pi^+ \pi^$ using two-photon interactions (474 fb⁻¹) PRD 86, 092005 (2012)

- Look for the process $\gamma\gamma \to X \to \eta_c(1S)\pi^+\pi^-$ where X stands for one of the resonances $\chi_{c2}(1P)$, $\eta_c(2S)$, X(3872), X(3915) or $\chi_{c2}(2P)$, where $\eta_c(1S) \to K_s^0 K^{\pm}\pi^{\mp}$ and $K_s^0 \to \pi^+\pi^-$
- Measure branching fractions for the decay of the states $\chi_{c2}(1P)$, $\eta_c(2S)$, X(3872), X(3915) and $\chi_{c2}(2P)$ to $\eta_c(1S)\pi^+\pi^-$
- Prediction for $B(\eta_c(2S) \rightarrow \eta_c(1S)\pi^+\pi^-) \sim 2.2\%$ obtained from $\Gamma(\eta_c(2S) \rightarrow \eta_c(1S)\pi^+\pi^-)/\Gamma(\psi(2S) \rightarrow J/\psi\pi^+\pi^-) \sim 2.9$ (M.B.Voloshin Mod.Phys.Lett A 17, 1533 (2002))
- First measurement

(日) (同) (三) (三)

$\gamma\gamma \rightarrow \eta_c \pi^+\pi^-$ - Results

16

19

PRD 86, 092005 (2012)

Using $B(\chi_{c2}(1P) \rightarrow K_s^0 K^{\pm} \pi^{\mp})$ and $B(\eta_c(2S) \rightarrow K_s^0 K^{\pm} \pi^{\mp})$ we obtain:

 -16^{+12}_{-14} ± 6

X(3915)

 $\chi_{c2}(2P)$

 $B(\chi_{c2}(1P) \rightarrow \eta_{c}(1S)\pi\pi) < 2.2\%$ @90%CL $B(\eta_c(2S) \to \eta_c(1S)\pi\pi) < 7.4\%$ @90%CL

$e^+e^- \rightarrow \gamma \psi(2S)\pi^+\pi^-$: $\pi^+\pi^-$ Invariant mass distribution

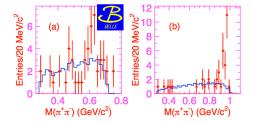
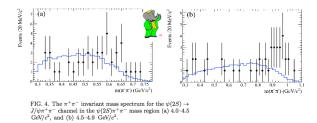



FIG. 4: $\pi^+\pi^-$ invariant mass distributions of events in different $\pi^+\pi^-\psi(2S)$ mass regions. (a): 4.0 GeV/ $c^2 < m_{\pi^+\pi^-\psi(2S)} < 4.5$ GeV/ c^2 , and (b): 4.5 GeV/ $c^2 < m_{\pi^+\pi^-\psi(2S)} < 4.9$ GeV/ c^2 . Points with error bars are data while the histograms are MC simulation with the phase-space distribution generated at $\sqrt{s} = 4.4$ GeV (a) and 4.7 GeV (b).

Elisa Fioravanti 34

1 E