Charmless $\mathrm{B}^{ \pm} \rightarrow \mathrm{h}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}$decays at LHCb

Alvaro Gomes on behalf of LHCb collaboration (Universidade Federal do Triângulo Mineiro)

Outline

- Theory Overview
- The $\mathrm{B}^{ \pm} \rightarrow \mathrm{h}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}$charmless decays.
- Dalitz plot.
- Evidence of direct CP violation in $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$decays. LHCb-CONF-2012-018 preliminary $\mathcal{L}=1.0 \mathrm{fb}^{-1}$
- Evidence of direct CP violation in $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{\star}$ decays.

LHCb-CONF-2012-028 preliminary $\mathcal{L}=1.0 \mathrm{fb}^{-1}$

- Measurements of the branching fraction of $\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$decays.

LHCb-PAPER-2012-047 preliminary $\mathcal{L}=1.0 \mathrm{fb}^{-1}$

- Conclusions

Theory Overview I

$$
\underline{B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} \quad \text { BR } \propto 10^{-5}}
$$

- Access to $t \rightarrow s(P)$ and the CKM phase $b \rightarrow u(T)$ transitions.
- γ at tree level.
- CP violation (CPV) expected from interference between tree $\left(\propto \lambda^{4}\right)$ and penguin $\left(\propto \lambda^{2}\right)$ diagrams in both channels. Type I
- For Kлл:
- CP violation expected also from ρ^{0}, f_{0} and K^{*} interferences in the phase space. Type II
- For KKK:
- ϕ resonance only from penguin contribution.
- CPV expected only from interference between ϕ and f_{x} (or no-resonant). Type II
- Note that Type I and Type II are two different sources of CPV.
* fx holds for any resonance with the $\mathrm{K}^{+} \mathrm{K}^{-}$final state.

Theory Overview II

$$
\underline{B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-} \quad \quad \mathrm{BR} \propto 10^{-5}}
$$

- Access to $t \rightarrow d(P)$ and the CKM phase $b \rightarrow u(T)$ transitions.
- γ at tree level.
- CPV expected from interference between tree $\left(\alpha \lambda^{3}\right)$ and penguin ($\propto \lambda^{3}$) diagrams in both channels. Type I
- For $\pi \pi \pi$:
- CP violation expected also from ρ^{0} and f_{0} interferences in the phase space. Type II
- For $\pi K K$:
- ϕ resonance not expected for this mode (for current LHCb statistics).
- CPV expected only from interference between K^{*} and f_{x} (or no-resonant). Type II
- Note that Type I and Type II are two different sources of CPV.
* fx holds for any resonance with the $\mathrm{K}^{+} \mathrm{K}^{-}$final state.

Theory Overview III

- CPV in Dalitz plot (DP) is commonly studied through an amplitude analysis using the isobar model:

$$
\mathcal{A}(\mathrm{B} \rightarrow \mathrm{f})=\sum \mathrm{a}_{\mathrm{r}} \mathrm{e}^{\mathrm{i}(\varphi)} \mathcal{M}_{\mathrm{r}}+\sum \mathrm{a}_{\mathrm{r}} \mathrm{e}^{\mathrm{i}(\varphi+\gamma)} \mathcal{M}_{\mathrm{r}}+\mathrm{a}_{\mathrm{nr}} \mathrm{e}^{\mathrm{i} \delta} \mathcal{M}_{\mathrm{nr}}
$$

- Each resonance is included in a coherent sum for the total decay.
- Resonance interferences (parallel or crossing) \rightarrow probe for CPV.
- CPV comes from differences in the amplitudes and phases for \mathcal{A} and $\overline{\mathcal{A}}$.
- Strong phase φ don't change sign under $\mathcal{A} \rightarrow \overline{\mathcal{A}}$.
- Weak phase γ changes the under $\mathcal{A} \rightarrow \overline{\mathcal{A}}$.
- Some results in these modes:
- Belle and BaBar: Evidence of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{\rho K}^{ \pm}$(Kлл final state). BaBar: PR D78, (2008) 012094
- BaBar: Evidence of CPV in $\mathrm{B}^{ \pm} \rightarrow \boldsymbol{\phi} \mathrm{K}^{ \pm}$(KKK final state). BaBar: PR D85, (2012) 112010

Theory Overview IV

- Amplitude analysis has a characteristic feature:
- Difference in the amplitude for a resonance implies a difference in the total number of events for that resonance.
- Difference in weak phase for a resonance implies a change in the shape of the resonance band in the phase space.
- Both effects must be seen where the resonance exists.

Fast MC with amplitude difference in $\mathrm{K} * \pi$

Fast MC with phase difference in $\rho \mathrm{K}_{\text {s }}$

Figures from I. Bediaga et. al: PR D86, (2012) 036005

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$

- Selection explores the decay topology:
- Tracks with high momentum and transverse momentum.
- Tracks with large impact parameters with respect to the interaction point.
- B candidate with large flight distance, momentum and impact parameter with respect to interaction point.
- Particle ID used to separate kaons from pions and to veto muons.
- Different samples based on different trigger decisions used for the measurement.
- Observable:

$$
\mathrm{A}_{\mathrm{cp}}=\frac{\Gamma\left(\mathrm{B}^{-} \rightarrow \mathrm{f}\right)-\Gamma\left(\mathrm{B}^{+} \rightarrow \mathrm{f}\right)}{\Gamma\left(\mathrm{B}^{-} \rightarrow \mathrm{f}\right)+\Gamma\left(\mathrm{B}^{+} \rightarrow \mathrm{f}\right)}
$$

CPV measurement strategy

- The raw asymmetry can be interpreted as:

$$
\mathrm{A}_{\mathrm{cp}}^{\mathrm{RAW}}\left(\mathrm{~K}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}\right)=\mathrm{A}_{\mathrm{cp}}\left(\mathrm{~K}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}\right)+\mathrm{A}_{\mathrm{P}}\left(\mathrm{~B}^{ \pm}\right)+\mathrm{A}_{\mathrm{I}}\left(\mathrm{~K}^{ \pm}\right)
$$

- Where:
- A_{cp} is the physical CPV.
- A_{P} is the $\mathrm{B}^{+} / \mathrm{B}^{-}$production asymmetry.
- $\mathrm{A}_{\mathrm{I}}\left(\mathrm{K}^{ \pm}\right)$is the instrumental asymmetry that holds for kaon detection and reconstruction.
- The $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$mode is used to extract the A_{I} and A_{P} asymmetries.
- Same decay topology as $\mathrm{B}^{ \pm} \rightarrow \mathrm{h}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}$decays and same selection applied.
- A_{P} is independent of the final state.
- No CPV expected: $\mathrm{A}_{\mathrm{CP}}=0.001 \pm 0.007$. PDG

$$
\mathrm{A}_{\mathrm{cp}}^{\mathrm{raw}}(\mathrm{~J} / \psi \mathrm{K})=-0.014 \pm 0.004
$$

- Hence:

$$
\mathrm{A}_{\mathrm{p}}\left(\mathrm{~B}^{ \pm}\right)+\mathrm{A}_{\mathrm{I}}=\mathrm{A}_{\mathrm{cp}}^{\mathrm{RAW}}\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)-\mathrm{A}_{\mathrm{cp}}\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)
$$

$$
\mathrm{A}_{\mathrm{cp}}\left(\mathrm{~K}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}\right)=\mathrm{A}_{\mathrm{cp}}^{\mathrm{RAW}}\left(\mathrm{~K}^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}\right)-\mathrm{A}_{\mathrm{cp}}^{\mathrm{RAW}}\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)+\mathrm{A}_{\mathrm{cp}}\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)
$$

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$raw asymmetries

$\mathrm{A}_{\mathrm{cp}}^{\mathrm{raw}}(\mathrm{K} \pi \pi)=+0.018 \pm 0.007$
$B: \mathbf{1 0 2 8 9} \pm \mathbf{1 1 0}$
$B^{+}: 11606 \pm 117$

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$ systematics and results

- The main sources of systematic uncertainties are:
- Subtraction method: kinematic variables of the kaon from control channel were weighted to match the same distribution from the signal kaon.
- Trigger correction: the measurement was performed using samples from different trigger decision.
- Final result:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \mathrm{K} \tau \pi\right)=+0.034 \pm 0.009(\text { stat }) \pm 0.004(\mathrm{syst}) \pm 0.007(\mathrm{~J} / \psi \mathrm{K}) \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \mathrm{KKK}\right)=-0.046 \pm 0.009(\text { stat }) \pm 0.005(\mathrm{syst}) \pm 0.007(\mathrm{~J} / \psi \mathrm{K})
\end{aligned}
$$

- Previous measurements:
$\mathrm{A}_{\mathrm{cp}}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{K} \pi \pi\right)=+0.038 \pm 0.022$
$\mathrm{A}_{\mathrm{cp}}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{KKK}\right)=-0.017 \pm 0.030$
PDG

First evidence of global CPV in charmless three-body B decays.

LHCh $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi$ and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$Dalitz plot

- Phase space without B mass constraint.
- Phase space not background subtracted.
- D^{0} contribution removed.
- J / ψ contribution removed from $K \pi \pi$ sample since it is the control channel.
- Acceptance efficiency is flat over the Dalitz plot
$* \pm 40 \mathrm{MeV} m_{B}$ mass window

KHCh $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$Dalitz plot

- Phase space without B mass constraint.
- Phase space not background subtracted.

$m_{K^{ \pm} K^{\mp} L o w}^{2}<m_{K^{ \pm} K^{\mp} H i g h}^{2}$
- D^{0} contribution removed.
- J / ψ contribution removed from $K \pi \pi$ sample since it is the control channel.
- Acceptance efficiency is flat over the Dalitz plot

KHCh $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi$ and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$Dalitz plot

- Different approaches for Dalitz plots:
- Adaptive binning applied to define bins with equal number of entries for the total sample.
- Asymmetry per bin (including background):

$$
A_{c p}^{N}(s, b)=\frac{(s+b)^{-}-(s+b)^{+}}{(s+b)^{-}+(s+b)^{+}}
$$

- The $\mathrm{A}_{\mathrm{cp}}^{\mathrm{n}}$ for each bin was computed:

LHCD

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$Dalitz plot

- Agrees with B factories results.
- No signature of CPV in the $\mathrm{K} \pi$ invariant mass

Large positive CPV at
low m²

LHCh

- No similar report from B factories.

Very large CPV at low $\mathrm{m}_{\mathrm{K}+\mathrm{K} \text { - low }}^{2}$ not clearly associated to a resonance

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$Dalitz plot

- Same selection applied on $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$analysis.
- Particle ID used to separate kaons from pions and to veto muons.
- Different samples based on different trigger decisions used for the measurement.
- Similar statistics
- Large background.
- Instrumental and productions asymmetries:
- Even number of kaons.
- Instrumental asymmetry for pions extracted from a large D^{*} sample.
- $\mathrm{B}^{ \pm}$production asymmetry extracted using previous analysis results.
- The raw asymmetry can be interpreted as:

$$
\underbrace{\mathrm{RAW}}_{\mathrm{cp}}\left(\pi^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}\right)=\mathrm{A}_{\mathrm{cp}}\left(\pi^{ \pm} \mathrm{h}^{+} \mathrm{h}^{-}\right)+\mathrm{A}_{\mathrm{p}}+\mathrm{A}_{\mathrm{I}}
$$

- Where:
- A_{cp} is the physical CPV.
- A_{P} is the $\mathrm{B}^{+} / \mathrm{B}^{-}$production asymmetry.
- A_{I} is the instrumental asymmetry that holds for detection and reconstruction.
- $\mathrm{A}_{\mathrm{cp}}^{\mathrm{RAW}}$ is the raw asymmetry and it was corrected by the acceptance in the Dalitz plot.
- Base measurements:
- A_{p} extracted from $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$control channel. LHCb-CONF-2012-018
- Large sample of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{ \pm} \pi^{\mp}$ and $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$used to measure the $\mathrm{A}_{\mathrm{I}}\left(\mathrm{K}^{ \pm}\right)$.

LHCb: PRL 108, (2012) 201601.

- $\mathrm{A}_{\mathrm{I}}\left(\pi^{ \pm}\right)$for pions extracted from a large $\mathrm{D}^{* \pm}$ sample. LHCb: PL B713, (2012) 186.
$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$
raw asymmetry

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$ systematics and results

- The main sources of systematic uncertainties are:
- Acceptance efficiency: the acceptance over the Dalitz plot was corrected for the B^{+}and B^{-}detection and reconstruction efficiencies.
- Kaon kinematics: the $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$raw asymmetry in bins of kaon momentum is weighted by the ratio of K^{-}and K^{+}efficiencies from $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$sample.
- Final result:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \pi \pi\right)=+0.120 \pm 0.020(\text { stat }) \pm 0.019(\text { syst }) \pm 0.007(\mathrm{~J} / \psi \mathrm{K}) \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \mathrm{KK}\right)=-0.153 \pm 0.046(\text { stat }) \pm 0.019(\text { syst }) \pm 0.007(\mathrm{~J} / \psi \mathrm{K})
\end{aligned}
$$

- Previous measurements:
$\mathrm{A}_{\mathrm{cp}}\left(\mathrm{B}^{ \pm} \rightarrow \pi \pi \pi\right)=+0.032 \pm 0.044$ (stat) ${ }_{-0.037}^{+0.047}($ syst $)$

$$
\mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \mathrm{KK}\right)=-0.00 \pm 0.10(\text { stat }) \pm 0.03(\text { syst })
$$

First evidence of global CPV in charmless three-body B decays.

LHCh $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$Dalitz plot

- Phase space without B mass constraint.
- Phase space not background subtracted.
- D^{0} contribution removed.
- Acceptance efficiency is flat over the Dalitz plot
$* \pm 40 \mathrm{MeV} m_{B}$ mass window

KHCh $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}$ - Dalitz plot

- Phase space without B mass constraint.
- Phase space not background subtracted.
- D^{0} contribution removed.
- Acceptance efficiency is flat over the Dalitz plot

LHCP

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$Dalitz plot

Very large CPV at low $\mathrm{m}^{2}{ }_{\pi+\pi-\text { low }}$ and $\mathrm{m}_{\pi+\pi-\text { high }}^{2}<15 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ not clearly associated to a resonance

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$zoom in large CPV region

Very large CPV in a region of the phase space not associated to a resonance

HHCD

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$Dalitz plot

Very large CPV at low $\mathrm{m}_{\mathrm{K}+\mathrm{K} \text { - }}^{2}$

LHCD

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{\dagger} \mathrm{K}^{-}$zoom in large CPV region

Event yield for $\mathbf{m}_{\mathrm{K}^{2}+\mathrm{K}_{-}}<3$

Very large CPV in a region of the phase space not associated to a resonance

BaBar results on $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$

- BaBar have similar results (but they didn't divide their sample in B^{+}and B^{-}):

Measurements of the BR of $\mathrm{B}^{+} \rightarrow \mathrm{ppK}^{+}$decays

- Selection explores the decay topology:
- Tracks with high momentum and transverse momentum.
- Tracks with large impact parameters with respect to the interaction point.
- B candidate with large flight distance, momentum and small impact parameter with respect to interaction point.

$$
B^{ \pm}: 6951 \pm 176
$$

- A (BDT) selection is trained after the first selection:
- Simulation used as signal sample.
- Data from sidebands used as background events.
- Particle ID used to separate protons from kaons and pions.

- Paper reports the measurement of the ration of branching fractions:

$$
\mathcal{R}(\text { mode })=\frac{\mathcal{B}\left(B^{+} \rightarrow \text { mode } \rightarrow p \bar{p} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=\frac{N_{\text {mode }}}{N_{J / \psi}} \times \frac{\epsilon_{J / \psi}}{\epsilon_{\text {mode }}}
$$

- "Mode" holds for intermediate states together with a kaon and $\boldsymbol{\epsilon}$ is the total selection efficiency.

$\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$intermediate states

$\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{P}} \mathrm{K}^{+}$results

- Yields summary:

B^{+}decay mode	Signal yield	Upper limit (95\% CL)
$p \bar{p} K^{+}[$total $]$	6951 ± 176	
$p \bar{p} K^{+}\left[M_{p \bar{p}}<2.85 \mathrm{GeV} / c^{2}\right]$	3238 ± 122	
$J / \psi K^{+}$	1458 ± 42	
$\eta_{c}(1 S) K^{+}$	856 ± 46	
$\psi(2 S) K^{+}$	107 ± 16	
$\eta_{c}(2 S) K^{+}$	39 ± 15	<65.4
$\chi_{c 0}(1 P) K^{+}$	15 ± 13	<38.1
$h_{c}(1 P) K^{+}$	21 ± 11	<40.2
$X(3872) K^{+}$	-9 ± 8	<10.3
$X(3915) K^{+}$	13 ± 17	<42.1

-Relatives branching fractions and upper limits for $\eta_{\mathrm{c}}(2 S)$ and $X(3872)$:

$$
\begin{gathered}
\frac{\mathcal{B}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)_{\text {total }}}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=4.91 \pm 0.19 \text { (stat) } \pm 0.14 \text { (syst) } \\
\frac{\mathcal{B}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)_{M_{p \bar{p}}<2.85 \mathrm{GeV} / c^{2}}}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=2.02 \pm 0.10 \text { (stat) } \pm 0.08 \text { (syst) }, \\
\frac{\mathcal{B}\left(B^{+} \rightarrow \eta_{c}(1 S) K^{+} \rightarrow p \bar{p} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=0.578 \pm 0.035 \text { (stat) } \pm 0.025 \text { (syst), } \\
\frac{\mathcal{B}\left(B^{+} \rightarrow \psi(2 S) K^{+} \rightarrow p \bar{p} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=0.080 \pm 0.012 \text { (stat) } \pm 0.009 \text { (syst). }
\end{gathered}
$$

$$
\begin{gathered}
\frac{\mathcal{B}\left(\eta_{c}(2 S) \rightarrow p \bar{p}\right)}{\mathcal{B}\left(\eta_{c}(2 S) \rightarrow K \bar{K} \pi\right)}<3.1 \times 10^{-2} \\
\frac{\mathcal{B}(X(3872) \rightarrow p \bar{p})}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}<2.0 \times 10^{-3}
\end{gathered}
$$

Conclusions I

- Evidence of CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$ LHCb-CONF-2012-018 preliminary $\mathcal{L}=1.0 \mathrm{fb}^{-1}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \mathrm{K} \pi \pi\right)=+0.034 \pm 0.009(\text { stat }) \pm 0.004(\text { syst }) \pm 0.007\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right) \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \mathrm{KKK}\right)=-0.046 \pm 0.009(\text { stat }) \pm 0.005(\text { syst }) \pm 0.007\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)
\end{aligned}
$$

- Evidence of CPV in $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$

LHCb-CONF-2012-028 preliminary $\mathcal{L}=1.0 \mathrm{fb}^{-1}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \pi \pi\right)=+0.120 \pm 0.020(\text { stat }) \pm 0.019(\text { syst }) \pm 0.007\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right) \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \mathrm{KK}\right)=-0.153 \pm 0.046(\text { stat }) \pm 0.019(\text { syst }) \pm 0.007\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)
\end{aligned}
$$

- Observation of very high CPV in regions of the Dalitz plot

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \pi \pi \text { region }\right)=+0.622 \pm 0.075(\text { stat }) \pm 0.032(\text { syst }) \pm 0.007\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right) \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \mathrm{KK} \text { region }\right)=-0.671 \pm 0.067(\text { stat }) \pm 0.028(\text { syst }) \pm 0.007\left(\mathrm{~J} / \psi \mathrm{K}^{ \pm}\right)
\end{aligned}
$$

- Measurements of the branching fraction of $\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$decays.

LHCb-PAPER-2012-047 preliminary $\mathcal{L}=1.0 \mathrm{fb}^{-1}$

$$
\begin{gathered}
\frac{\mathcal{B}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)_{\text {total }}}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=4.91 \pm 0.19 \text { (stat) } \pm 0.14 \text { (syst) }, \\
\frac{\mathcal{B}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)_{M_{p p}<2.85 \mathrm{GeV} / c^{2}}}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=2.02 \pm 0.10 \text { (stat) } \pm 0.08 \text { (syst) }, \\
\frac{\mathcal{B}\left(B^{+} \rightarrow \eta_{c}(1 S) K^{+} \rightarrow p \bar{p} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=0.578 \pm 0.035 \text { (stat) } \pm 0.025 \text { (syst) }, \\
\frac{\mathcal{B}\left(B^{+} \rightarrow \psi(2 S) K^{+} \rightarrow p \bar{p} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow p \bar{p} K^{+}\right)}=0.080 \pm 0.012 \text { (stat) } \pm 0.009 \text { (syst). }
\end{gathered}
$$

- The upper limits obtained challenges some predictions for the molecular interpretations of the $\mathrm{X}(3872)$:
G. Chen, et. al: PRD 77, (2008) 097501 and E. Braaten, et. al: PRD 77, (2008) 034019

$$
\begin{gathered}
\frac{\mathcal{B}\left(\eta_{c}(2 S) \rightarrow p \bar{p}\right)}{\mathcal{B}\left(\eta_{c}(2 S) \rightarrow K \bar{K} \pi\right)}<3.1 \times 10^{-2} \\
\frac{\mathcal{B}(X(3872) \rightarrow p \bar{p})}{\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}<2.0 \times 10^{-3}
\end{gathered}
$$

Three times more statistics available.

Backup

LHCD

- Excellent tracking and vertexing for B and D decays.
- Excellent particle identification.
- Kaons, pions and protons travels through substantial amount of material.
- Possible detection asymmetry is accounted for.

Final selection for $\mathrm{B} \rightarrow \mathrm{hhh}, \mathrm{h}=\mathrm{K}$ or π

- Trigger decision:
- Hardware trigger (L0) to select a hadron with high transverse energy.
- Software trigger (HIt) to select hadrons with high transverse momentum and coming from the same decaying vertex
- PID selection:
- $\Delta \log \mathcal{L}_{\mathrm{K} \pi}>4$ for kaons and $\Delta \log \mathcal{L}_{\mathrm{K} \pi}<0$ for pions.
- Muon veto : $\Delta \log \mathcal{L}_{\mu \pi}<5$ to exclude the control channel (see below).
- Cuts on invariant masses $\mathrm{m}_{\pi \pi}, \mathrm{m}_{\mathrm{K} \pi}$ and m_{KK} to exclude charm background.
- Offline selection explore the decay topology:
- Tracks momenta and impact parameter with respect to interaction point and decaying vertex.
- B candidate flight distance, momentum and impact parameter with respect to interaction

Variables	Selection cuts
Tracks P_{T}	$>0.1 \mathrm{GeV} / \mathrm{c}$
Tracks P	$>1.5 \mathrm{GeV} / \mathrm{c}$
Tracks IP χ^{2}	>1
Tracks $\chi^{2} /$ n.d.f.	>3
Sum of P_{T} of tracks	$>4.5 \mathrm{GeV} / \mathrm{c}$
Sum of $\mathrm{IP} \chi^{2}$ of tracks	>200
P_{T} of the highest- P_{T} track	$>1.5 \mathrm{GeV} / \mathrm{c}$
P_{T} of the second highest- P_{T} track	$>0.9 \mathrm{GeV} / \mathrm{c}$
IP of the highest- P_{T} track	$>0.05 \mathrm{~mm}$
Maximum DOCA	$<0.2 \mathrm{~mm}$
$B^{ \pm}$candidate $M_{K K K}$	$5.05-6.30 \mathrm{GeV} / \mathrm{c}^{2}$
$B^{ \pm}$candidate $M_{R}^{C O R}$	$4-7 \mathrm{GeV} / \mathrm{c}^{2}$
$B^{ \pm}$candidate $M^{C K R}$	$<5.8 \mathrm{GeV} / \mathrm{c}^{2}$
$B^{ \pm}$candidate $\mathrm{IP} \chi^{2}$	<10
$B^{ \pm}$candidate P_{T}	$>1.7 \mathrm{GeV} / \mathrm{c}$
Distance from SV to any PV	$>3 \mathrm{~mm}$
Secondary Vertex χ^{2}	<12
$B^{ \pm}$candidate cos (θ)	>0.99998
$B^{ \pm}$Pointing angle	<0.1
$B^{ \pm}$Flight Distance χ^{2}	>700
Number of long tracks in the event	<200

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{ \pm} \pi$ and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K} \mathrm{K}^{-}$ Fit function

- We performed an unbinned extended likelihood fit to the $\mathrm{B}^{ \pm}$invariant mass
- Signal PDF model:
- Sum of a Crystal Ball and a Gaussian
- Common mean and different widths for the two functions.
- Fractions and Crystal Ball parameters extracted from MC and fixed to data.
- Widths for both Crystal Ball and Gaussian determined from the fit to full data.
- Combinatorial background PDF model:
- Exponential function with one free parameter for the slope.
- Peaking and partial backgrounds PDF model:
- Modified Gaussian with shapes extracted from MC and fixed to data for peaking and partial backgrounds.
- Fractions extracted from MC for peaking background and left float in the fit for partial background.

Signal PDF: Gaussian + Crystal Ball.
$F_{S}(m)=f_{\text {sig }} \mathcal{G}\left(m ; m_{0}, \sigma_{1}\right)+\left(1-f_{\text {sig }}\right) \mathcal{C}\left(m ; m_{0}, \sigma_{2}, a, n\right)$
Background PDF: Modified Gaussian.
$F_{i}(m)=N_{i} \exp \left[\frac{-\left(m-\mu_{i}\right)^{2} \beta_{i}(m)}{2 \sigma_{R i}^{2}}\right], \quad \beta_{i}(m)=\exp \left(-2 \lambda_{i}\left(m-\mu_{i}\right)\right)$

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$ systematics and results

- Signal PDF: floated parameters in the fit procedure and two Crystal Balls used.
- Signal shape: signal yield from the difference between the total number of events and the background integral inside signal region.
- Background model: background fraction varied for both $К \pi л$ and KKK modes.
- Background charge asymmetry: fit with 100% charge asymmetry for the peaking background components.
- Acceptance: raw asymmetry corrected by the efficiency in each bin of the phase space.
- Subtraction method: kinematic variables of the kaon from control channel were weighted to match the same distribution from the signal kaon.

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi$ and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K} \mathrm{K}^{-}$ Fit function
- We performed an unbinned extended likelihood fit to the $\mathrm{B}^{ \pm}$invariant mass.
- Signal PDF model:
- Crystal Ball function.
- Crystal Ball radiative tail parameters extracted from MC and fixed to data.
- Crystal Ball mean and width extracted from the combined $\mathrm{B}^{+} / \mathrm{B}^{-}$data and fixed to the individual B^{+} and B^{-}fits.
- Combinatorial background PDF model:
- Exponential function with one free parameter for the slope for $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{\top}$.
- A modified Gaussian for $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}$.
- Peaking and partial backgrounds PDF model:
- Modified Gaussian with shapes extracted from MC and fixed to data for peaking and partial backgrounds for $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi$.
- Negligible for $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$.

$\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$and $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$ systematics and results

- Fit function: signal yield from the difference between the total number of events and the background integral inside signal region.
- Acceptance efficiency: error of the efficiency correction R.
- Kaon kinematics: the $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$raw asymmetry in bins of kaon momentum is weighted by the ratio of K^{-}and K^{+}efficiencies from $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$sample.
- Kaon instrumental asymmetry: the statistical uncertainty of the kaon instrumental asymmetry was included as a systematic since it came from another analysis.
- Pion instrumental asymmetry: the statistical uncertainty of the pion instrumental asymmetry was included as a systematic since it came from another analysis.

Contribution	$\pi \pi \pi$	$K K \pi$
Fit function model	0.008	0.009
Acceptance	0.015	0.014
A_{D}^{K} kaon kinematics	0.008	0.008
A_{D}^{K} stat. uncertainty	0.002	0.002
A_{D}^{π} stat. uncertainty	0.003	0.003
Total	0.019	0.019

$$
\begin{aligned}
& A_{c p}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \pi \pi\right)=+0.120 \pm 0.020(\text { stat }) \pm 0.019(\text { syst }) \pm 0.007 * \\
& \mathrm{~A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \mathrm{KK}\right)=-0.153 \pm 0.046(\text { stat }) \pm 0.019(\text { syst }) \pm 0.007 * \\
& * \mathrm{~J} / \psi \mathrm{K} \mathrm{~A}_{\mathrm{cp}} \text { uncertainty quoted separately. } \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \pi \pi\right)=+0.032 \pm 0.044(\text { stat }){ }_{-0.037}^{+0.040}(\text { syst }) \quad \text { PDG } \\
& \mathrm{A}_{\mathrm{cp}}\left(\mathrm{~B}^{ \pm} \rightarrow \pi \mathrm{KK}\right)=-0.00 \pm 0.10(\text { stat }) \pm 0.03(\text { syst }) \quad 38
\end{aligned}
$$

BDT variables for $\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$decays

- The p_{T} of each track;
- Sum of the daughters' p_{T};
- Sum of the IP χ^{2} of the three daughter tracks with respect to the primary vertex;
- IP of the daughter with the hightest p_{T} with respect to the primary vertex;
- The number of daughters with $\mathrm{p}_{\mathrm{T}}>900$ MeV/c;
- Maximum distance of closest approach between any two daughters;
- IP of the B candidate with respect to any primary vertex;
- Distance between the primary and secondary vertices;
- The angle between the flight direction and the z axis of the detector;
- The pointing variable defined as: $\frac{P \sin \theta}{P \sin \theta+\sum_{i} p_{\mathrm{T}, \mathrm{i}}}$
- The log likelihood difference for each daughter between the assumed PID hypothesis and the pion hypothesis.
- The BDT response efficiency is grater than 92% with a background rejection of 86%.
- The BDT response is chosen in order to have a signal over background ratio of the order of unity and this corresponds to a response value of -0.11.
$\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$systematics

Table 2: Relative systematic uncertainties (in \%) on the relative branching fractions from different sources. The total systematic uncertainty is determined by adding the individual contributions in quadrature.

Source	\mathcal{R} (total $)$	$\mathcal{R}\left(M_{p \bar{p}}<2.85 \mathrm{GeV} / c^{2}\right)$	$\mathcal{R}\left(\eta_{c}(1 S)\right)$	$\mathcal{R}(\psi(2 S))$
Efficiency ratio	0.21	0.5	3.3	4.8
B^{+}mass fit range	0.16	0.5	-	-
Sig. and Bkg. shape	2.5	3.6	1.8	6.5
B^{+}mass window	0.6	0.6	0.9	3.8
Non-signal component	-	-	0.4	5.1
Signal tail param.	1.0	1.0	1.2	4.3
Total	2.8	3.8	4.1	11.3

Source	$\mathcal{R}\left(\eta_{c}(2 S)\right)$	$\mathcal{R}\left(\chi_{c 0}(1 P)\right)$	$\mathcal{R}\left(h_{c}(1 P)\right)$	$\mathcal{R}(X(3872))$	$\mathcal{R}(X(3915))$
Efficiency ratio	4.4	2.5	3.4	6.5	7.0
B^{+}mass fit range	-	-	-	-	
Sig. and Bkg. shape	3.9	3.3	14.3	5.6	10.1
B^{+}mass window	11.3	23.6	23.6	17.5	7.5
Non-signal component	-	-	-	-	-
Signal tail param.	1.0	1.0	1.0	1.0	1.0
Total	12.8	24.0	27.8	19.5	15.5

