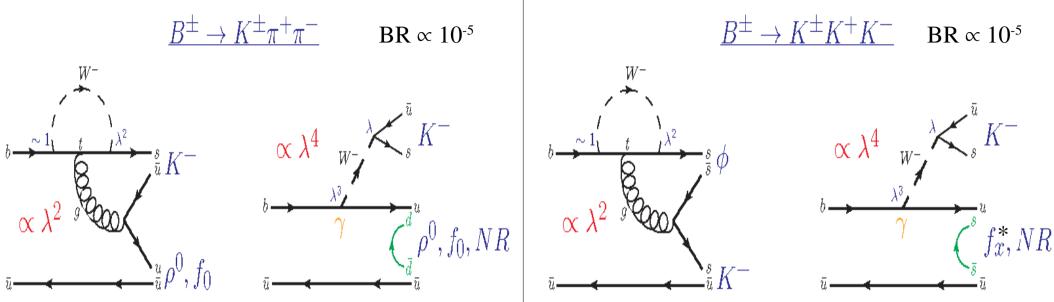
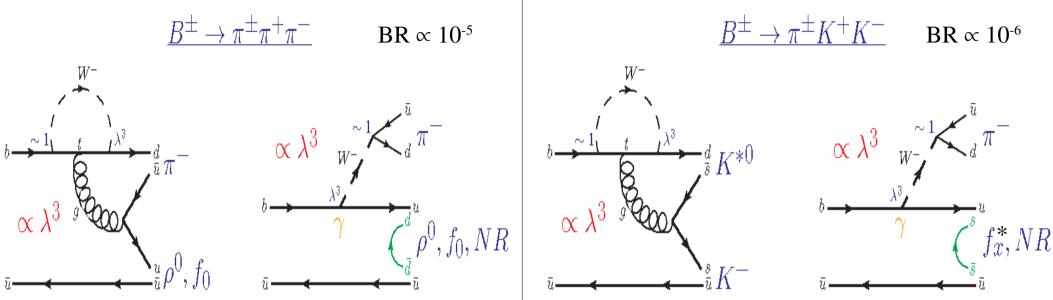


Charmless $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ decays at LHCb


<u>Alvaro Gomes</u> on behalf of LHCb collaboration (Universidade Federal do Triângulo Mineiro)

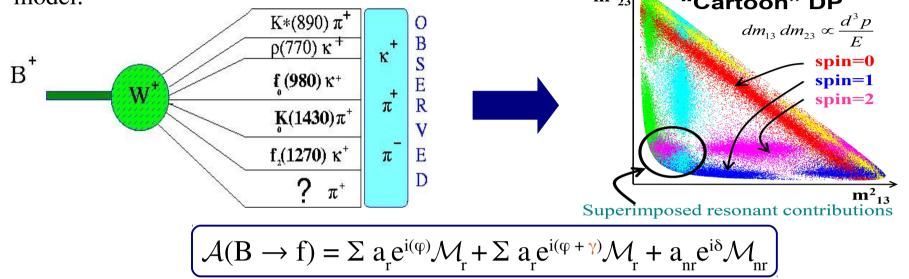
Outline

- Theory Overview
 - The $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ charmless decays.
 - Dalitz plot.
- Evidence of direct CP violation in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ decays. LHCb-CONF-2012-018 preliminary $\mathcal{L} = 1.0$ fb⁻¹
- Evidence of direct CP violation in $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays. LHCb-CONF-2012-028 preliminary $\mathcal{L} = 1.0 \text{ fb}^{-1}$
- Measurements of the branching fraction of $B^+ \rightarrow p\overline{p}K^+$ decays. LHCb-PAPER-2012-047 preliminary $\mathcal{L} = 1.0 \text{ fb}^{-1}$
- Conclusions



- Access to $t \rightarrow s$ (P) and the CKM phase $b \rightarrow u$ (T) transitions.
 - γ at tree level.
- CP violation (CPV) expected from interference between tree ($\propto \lambda^4$) and penguin ($\propto \lambda^2$) diagrams in both channels. Type I
- For Kππ:
 - CP violation expected also from ρ^0 , f_0 and K* interferences in the phase space. Type II
- For KKK:
 - ϕ resonance only from penguin contribution.
 - CPV expected only from interference between ϕ and f_x (or no-resonant). Type II
- Note that Type I and Type II are two different sources of CPV.
- * fx holds for any resonance with the K^+K^- final state.

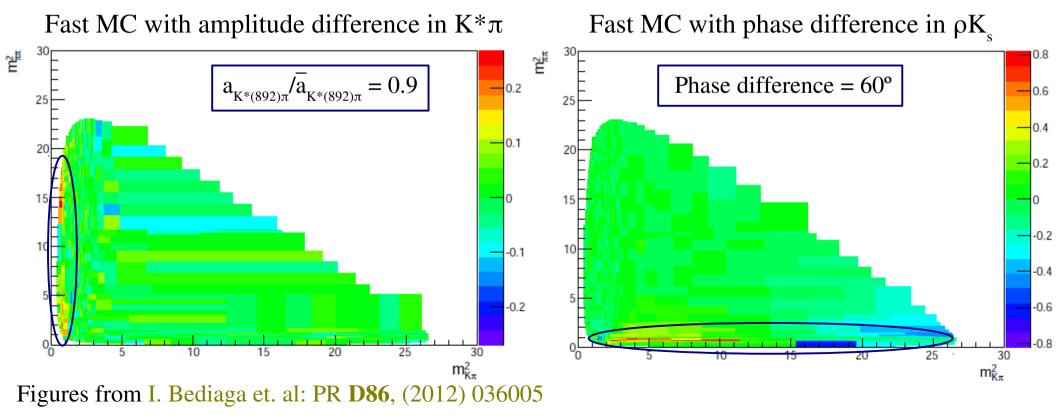
Theory Overview II



- Access to $t \rightarrow d$ (P) and the CKM phase $b \rightarrow u$ (T) transitions.
 - γ at tree level.
- CPV expected from interference between tree ($\propto \lambda^3$) and penguin ($\propto \lambda^3$) diagrams in both channels. Type I
- For πππ:
 - CP violation expected also from ρ^0 and f_0 interferences in the phase space. Type II
- For πKK :
 - ϕ resonance not expected for this mode (for current LHCb statistics).
 - CPV expected only from interference between K* and f_x (or no-resonant). Type II
- Note that Type I and Type II are two different sources of CPV.
- * fx holds for any resonance with the K^+K^- final state.

Belle: PRL 96, (2006) 251803

CPV in Dalitz plot (DP) is commonly studied through an amplitude analysis using the isobar model:
 m²₂₃↑ "Cartoon" DP



- Each resonance is included in a coherent sum for the total decay.
- Resonance interferences (parallel or crossing) \rightarrow probe for CPV.
- CPV comes from differences in the amplitudes and phases for \mathcal{A} and $\overline{\mathcal{A}}$.
 - Strong phase φ don't change sign under $\mathcal{A} \to \overline{\mathcal{A}}$.
 - Weak phase γ changes the under $\mathcal{A} \to \overline{\mathcal{A}}$.
- Some results in these modes:
 - Belle and BaBar: Evidence of CPV in $B^{\pm} \rightarrow \rho K^{\pm}$ (K $\pi\pi$ final state). BaBar: PR D78, (2008) 012064
 - BaBar: Evidence of CPV in $B^{\pm} \rightarrow \phi K^{\pm}$ (KKK final state). BaBar: PR D85, (2012) 112010

Theory Overview IV

- Amplitude analysis has a characteristic feature:
 - Difference in the amplitude for a resonance implies a difference in the total number of events for that resonance.
 - Difference in weak phase for a resonance implies a change in the shape of the resonance band in the phase space.
- Both effects must be seen where the resonance exists.

LHCb-CONF-2012-018

- Selection explores the decay topology:
 - Tracks with high momentum and transverse momentum.
 - Tracks with large impact parameters with respect to the interaction point.
 - B candidate with large flight distance, momentum and impact parameter with respect to interaction point.
- Particle ID used to separate kaons from pions and to veto muons.
- Different samples based on different trigger decisions used for the measurement.
- Observable:

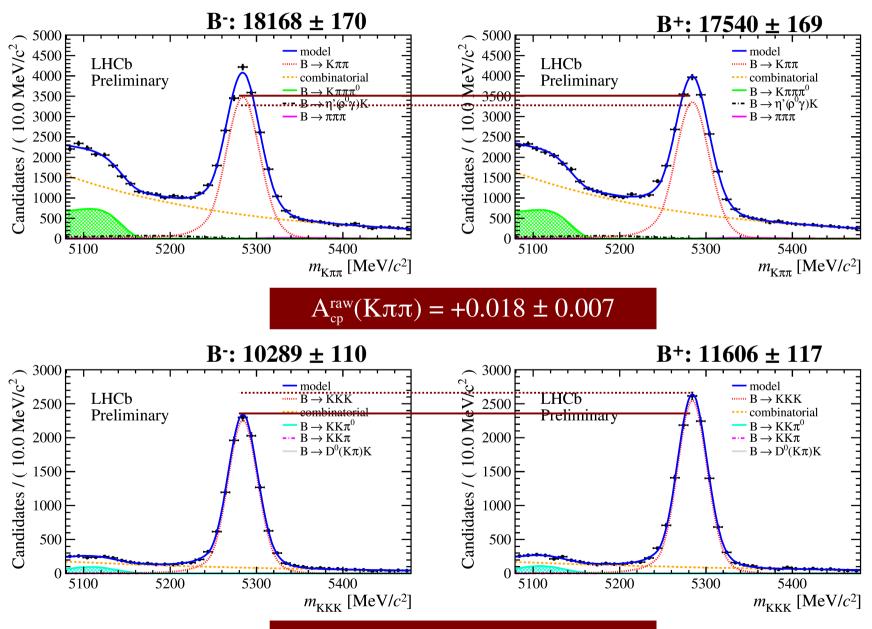
$$A_{cp} = \frac{\Gamma(B^{-} \to f) - \Gamma(B^{+} \to f)}{\Gamma(B^{-} \to f) + \Gamma(B^{+} \to f)}$$

• The raw asymmetry can be interpreted as:

$$A_{cp}^{\text{RAW}}(K^{\pm}h^{+}h^{-}) = A_{cp}(K^{\pm}h^{+}h^{-}) + A_{p}(B^{\pm}) + A_{I}(K^{\pm})$$

- Where:
 - A_{cp} is the physical CPV.
 - A_p is the B⁺/B⁻ production asymmetry.
 - $A_{I}(K^{\pm})$ is the instrumental asymmetry that holds for kaon detection and reconstruction.
- The $B^{\pm} \rightarrow J/\psi K^{\pm}$ mode is used to extract the A_{I} and A_{P} asymmetries.
 - Same decay topology as $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ decays and same selection applied.
 - A_{p} is independent of the final state.
 - No CPV expected: $A_{CP} = 0.001 \pm 0.007$. PDG

 $A_{cp}^{raw}(J/\psi K) = -0.014 \pm 0.004$


• Hence:

$$A_{p}(B^{\pm}) + A_{I} = A_{cp}^{RAW}(J/\psi K^{\pm}) - A_{cp}(J/\psi K^{\pm})$$

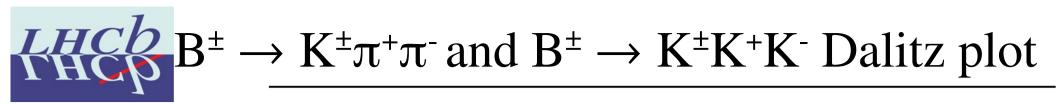
 $A_{cp}(K^{\pm}h^{+}h^{-}) = A_{cp}^{RAW}(K^{\pm}h^{+}h^{-}) - A_{cp}^{RAW}(J/\psi K^{\pm}) + A_{cp}(J/\psi K^{\pm})$

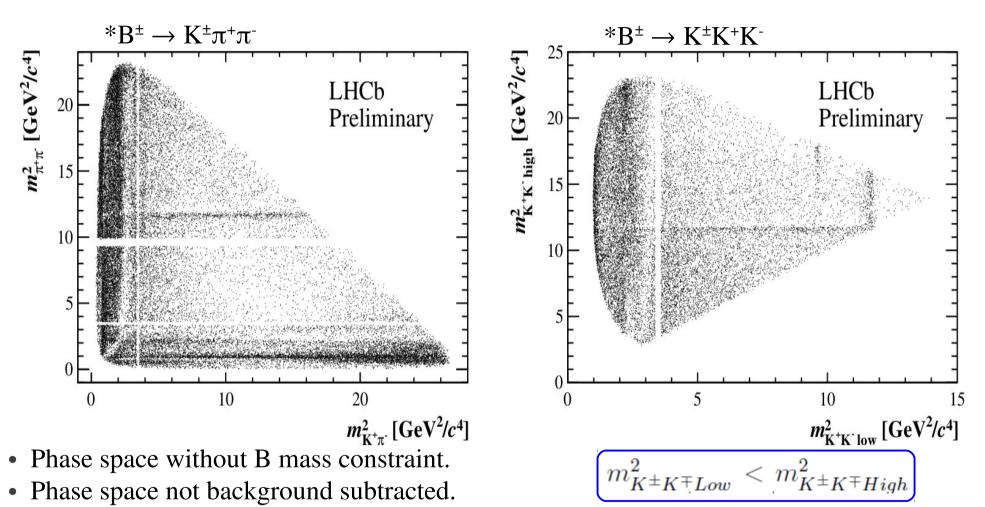
$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ raw asymmetries

 $A_{cp}^{raw}(KKK) = -0.060 \pm 0.007$

$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ systematics and results

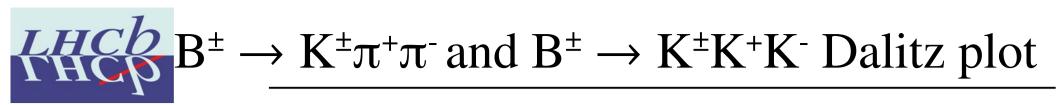
- The main sources of systematic uncertainties are:
 - Subtraction method: kinematic variables of the kaon from control channel were weighted to match the same distribution from the signal kaon.
 - Trigger correction: the measurement was performed using samples from different trigger decision.
- Final result:

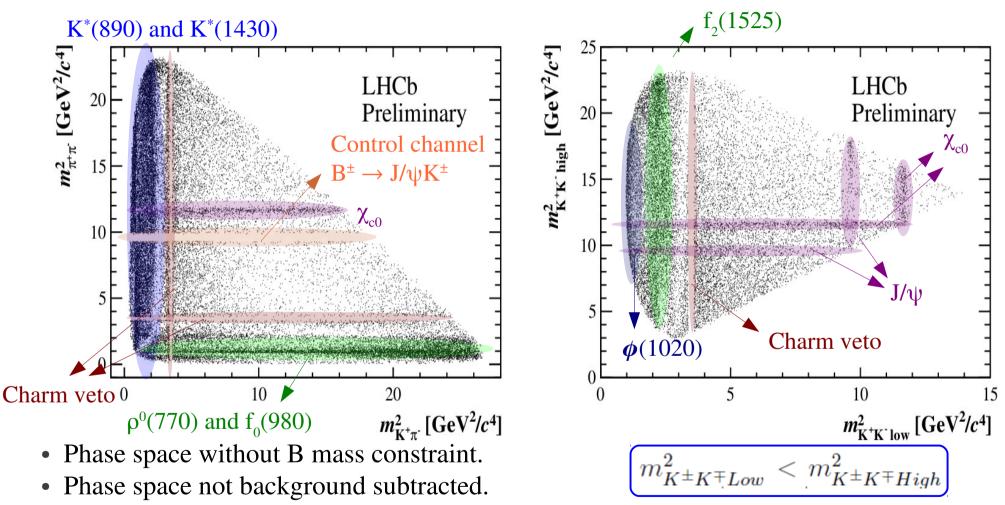

 $\begin{aligned} A_{cp}(B^{\pm} \to K\pi\pi) &= +0.034 \pm 0.009(\text{stat}) \pm 0.004(\text{syst}) \pm 0.007(J/\psi K) \\ A_{cp}(B^{\pm} \to KKK) &= -0.046 \pm 0.009(\text{stat}) \pm 0.005(\text{syst}) \pm 0.007(J/\psi K) \end{aligned}$


2.8σ 3.7σ

• Previous measurements:

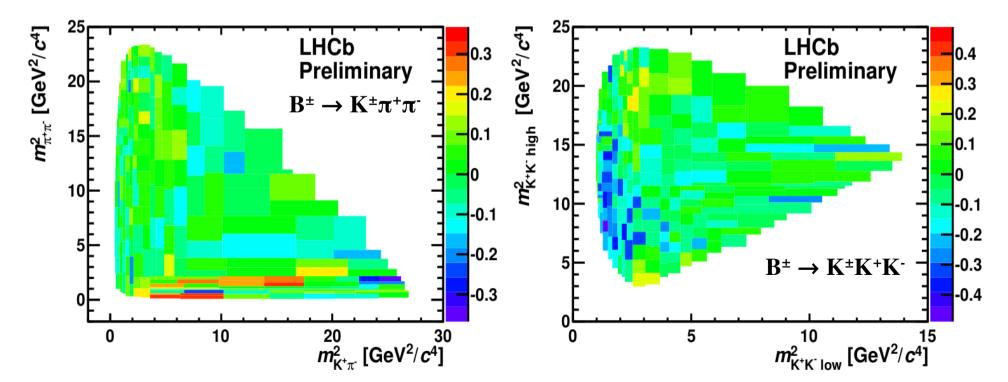
 $\begin{array}{l} A_{cp}(B^{\pm} \rightarrow K\pi\pi) = +0.038 \pm 0.022 \\ A_{cp}(B^{\pm} \rightarrow KKK) = -0.017 \pm 0.030 \end{array} \begin{array}{l} \text{PDG} \end{array}$


First evidence of global CPV in charmless three-body B decays.

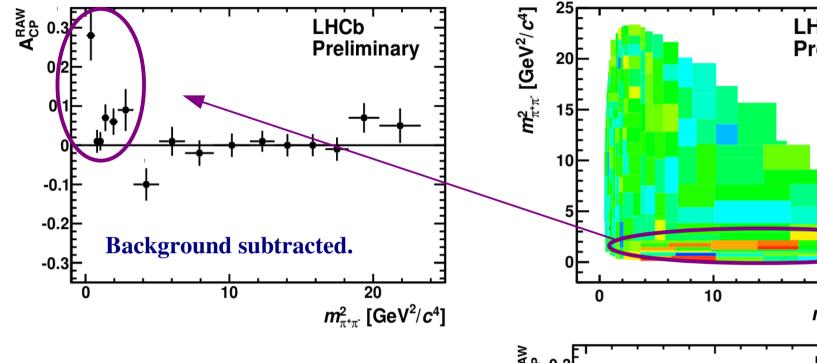


- D⁰ contribution removed.
- J/ ψ contribution removed from K $\pi\pi$ sample since it is the control channel.
- Acceptance efficiency is flat over the Dalitz plot

* $\pm 40 \, MeV \, m_{\rm B} \, mass \, window$

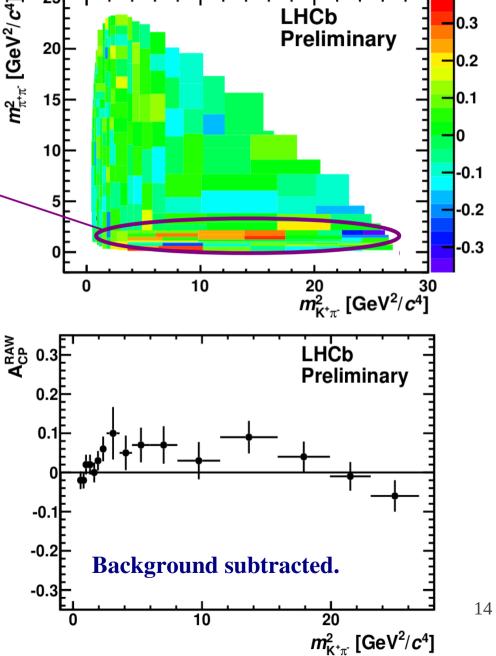

- D⁰ contribution removed.
- J/ ψ contribution removed from K $\pi\pi$ sample since it is the control channel.
- Acceptance efficiency is flat over the Dalitz plot

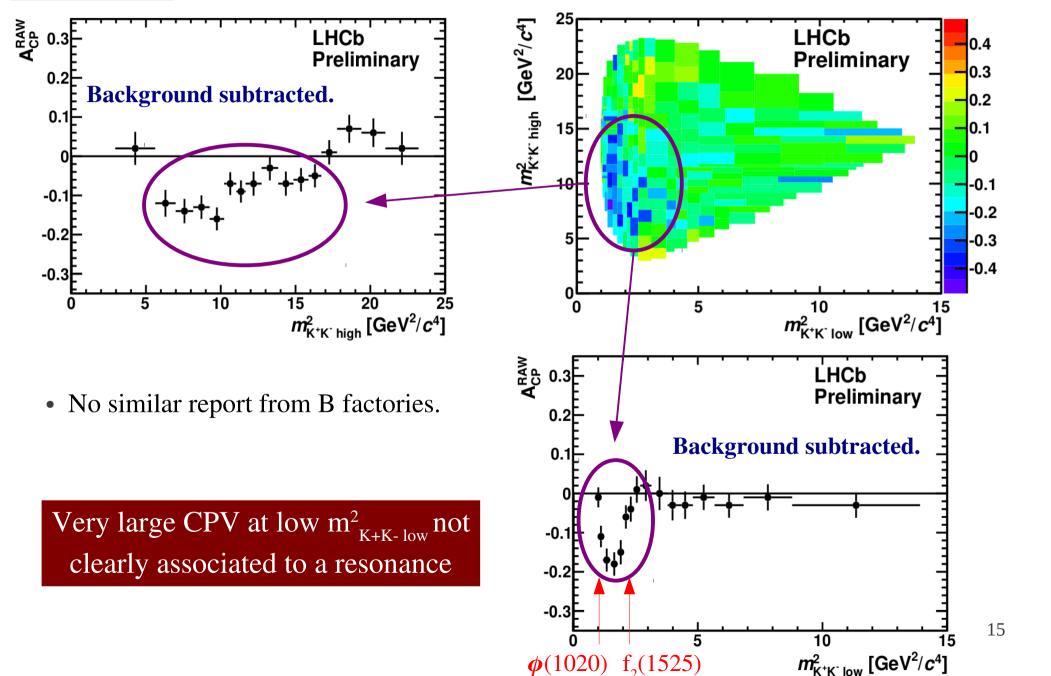
LHCP $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Dalitz plot


- Different approaches for Dalitz plots:
 - Adaptive binning applied to define bins with equal number of entries for the total sample.
- Asymmetry per bin (including background):

$$A_{cp}^{N}(s,b) = \frac{(s+b)^{-} - (s+b)^{+}}{(s+b)^{-} + (s+b)^{+}}$$

• The Aⁿ_{cp} for each bin was computed:




- Agrees with B factories results.
- No signature of CPV in the Kπ invariant mass

Large **positive** CPV at low $m^2_{\pi+\pi-}$

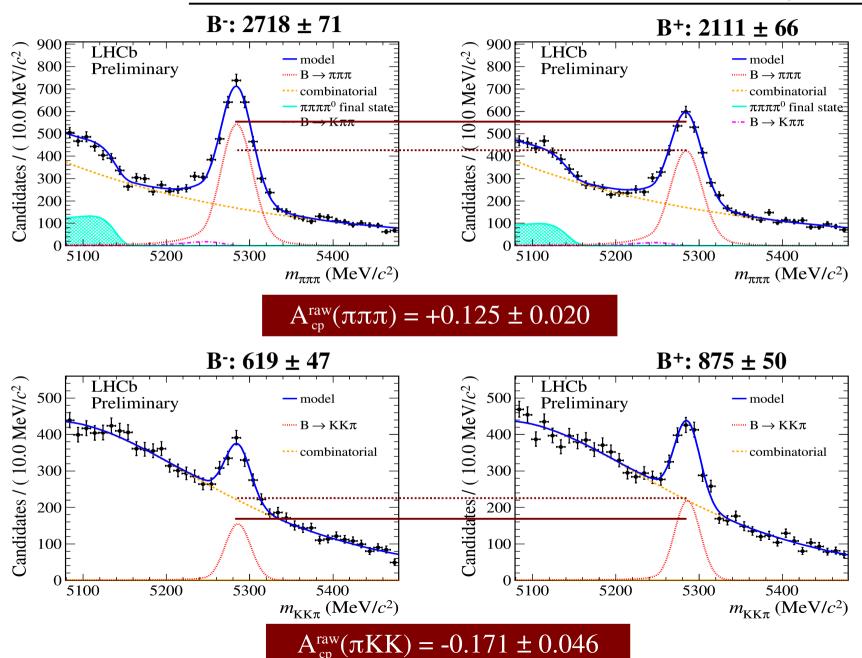
$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Dalitz plot

LHCb-CONF-2012-028

- Same selection applied on $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \to K^{\pm}K^{+}K^{-}$ analysis.
- Particle ID used to separate kaons from pions and to veto muons.
- Different samples based on different trigger decisions used for the measurement.
- Similar statistics
 - Large background.
- Instrumental and productions asymmetries:
 - Even number of kaons.
 - Instrumental asymmetry for pions extracted from a large D* sample.
 - B^{\pm} production asymmetry extracted using previous analysis results.

• The raw asymmetry can be interpreted as:

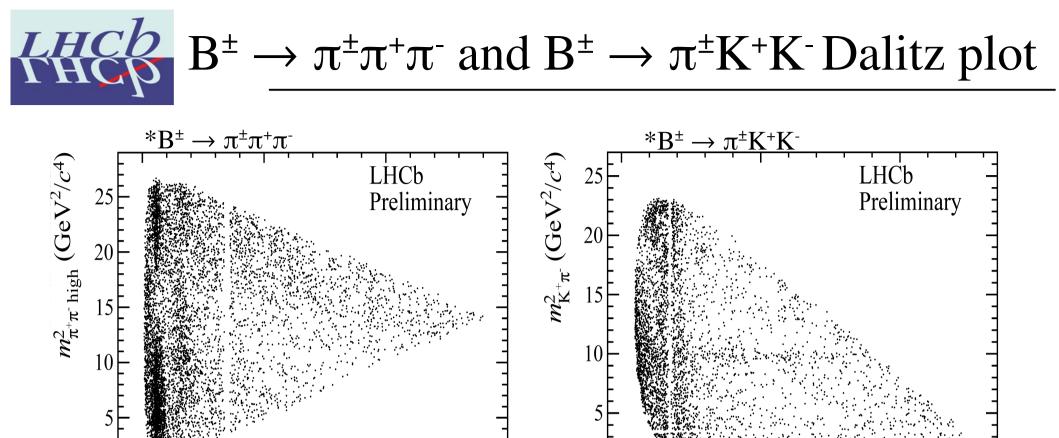
$$A_{cp}^{RAW}(\pi^{\pm}h^{+}h^{-}) = A_{cp}(\pi^{\pm}h^{+}h^{-}) + A_{p} + A_{I}$$

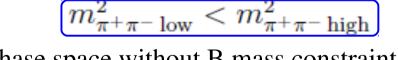

- Where:
 - A_{cp} is the physical CPV.
 - A_p is the B⁺/B⁻ production asymmetry.
 - A_{I} is the instrumental asymmetry that holds for detection and reconstruction.
 - A_{cp}^{RAW} is the raw asymmetry and it was corrected by the acceptance in the Dalitz plot.
- Base measurements:
 - A_p extracted from $B^{\pm} \rightarrow J/\psi K^{\pm}$ control channel. LHCb-CONF-2012-018
 - Large sample of $D^0 \rightarrow K^{\pm}\pi^{\mp}$ and $D^0 \rightarrow K^+K^-$ used to measure the $A_I(K^{\pm})$. LHCb: PRL 108, (2012) 201601.
 - $A_{I}(\pi^{\pm})$ for pions extracted from a large D*[±] sample. LHCb: PL **B713**, (2012) 186.

$B^{\pm} \rightarrow \pi^{\pm}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ and $B^{\pm} \rightarrow \pi^{\pm}K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$

raw asymmetry

18


$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ systematics and results


- The main sources of systematic uncertainties are:
 - Acceptance efficiency: the acceptance over the Dalitz plot was corrected for the B⁺ and B⁻ detection and reconstruction efficiencies.
 - Kaon kinematics: the $B^{\pm} \rightarrow J/\psi K^{\pm}$ raw asymmetry in bins of kaon momentum is weighted by the ratio of K⁻ and K⁺ efficiencies from $D^0 \rightarrow K^+K^-$ sample.
- Final result:

 $\begin{array}{ll} A_{cp}(B^{\pm} \to \pi\pi\pi) = +0.120 \pm 0.020(\text{stat}) \pm 0.019(\text{syst}) \pm 0.007(\text{J/}\psi\text{K}) & \textbf{4.2\sigma} \\ A_{cp}(B^{\pm} \to \pi\text{KK}) = -0.153 \pm 0.046(\text{stat}) \pm 0.019(\text{syst}) \pm 0.007(\text{J/}\psi\text{K}) & \textbf{3.0\sigma} \end{array}$

• Previous measurements: $A_{cp}(B^{\pm} \to \pi\pi\pi) = +0.032 \pm 0.044(\text{stat}) +0.040(\text{syst}) +0.037(\text{syst})$ $A_{cp}(B^{\pm} \to \pi KK) = -0.00 \pm 0.10(\text{stat}) \pm 0.03(\text{syst})$

First evidence of global CPV in charmless three-body B decays.

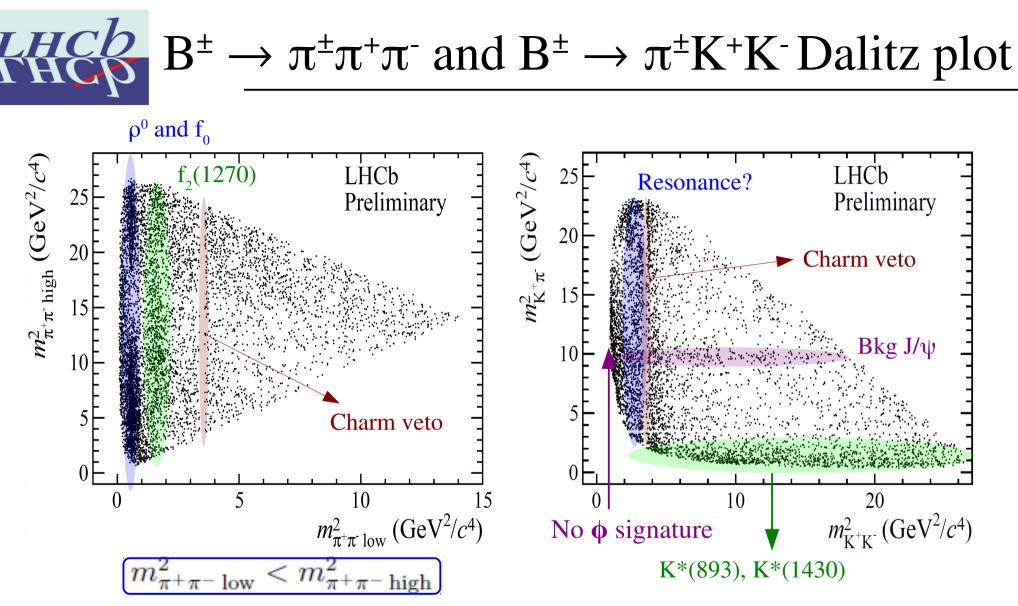
10

 $m_{\pi^+\pi^- \log}^2 ({\rm GeV}^2/c^4)$

Phase space without B mass constraint.
Phase space not be alterand subtracted

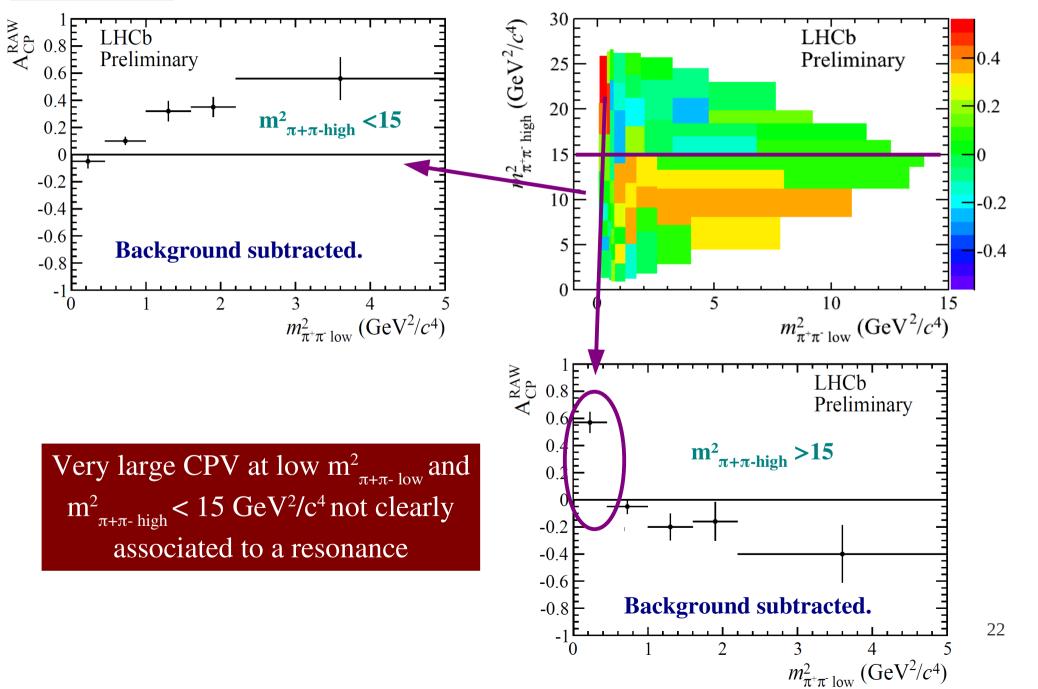
5

- Phase space not background subtracted.
 D⁰ contribution removed.
- Acceptance efficiency is flat over the Dalitz plot

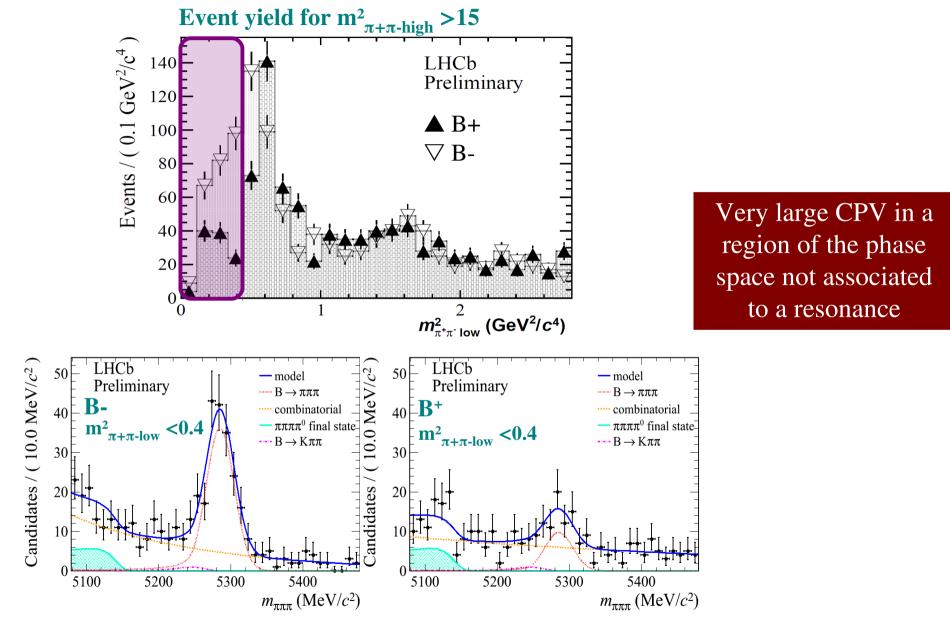

* $\pm 40 MeV m_B mass window$

0

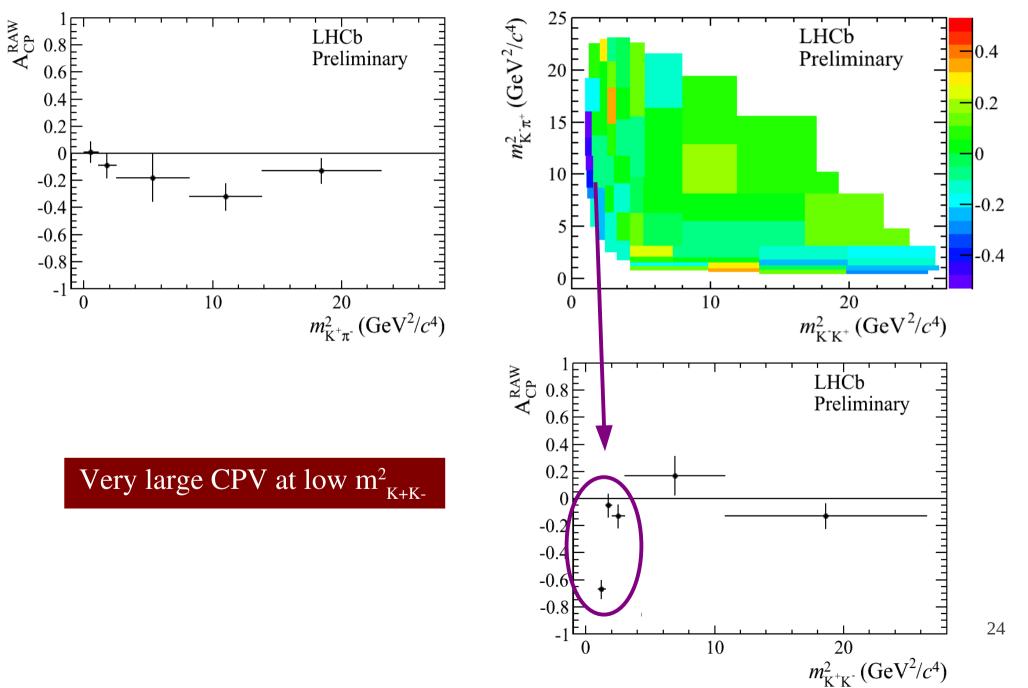
10


20

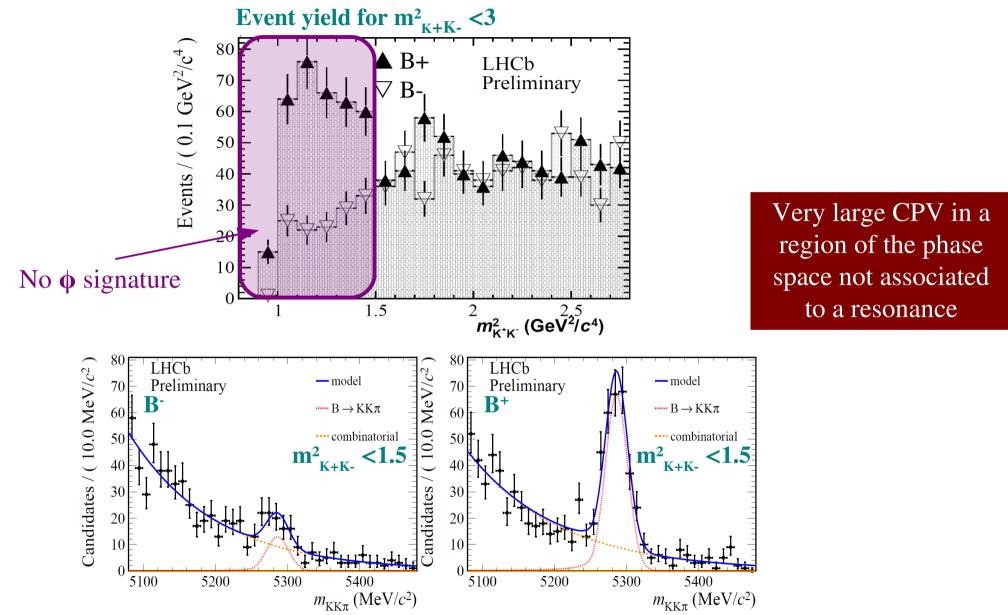
 $m_{\rm K^+ K^-}^2 ({\rm GeV}^2/c^4)$


- Phase space without B mass constraint.
- Phase space not background subtracted.
- D⁰ contribution removed.
- Acceptance efficiency is flat over the Dalitz plot

$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ zoom in large CPV region

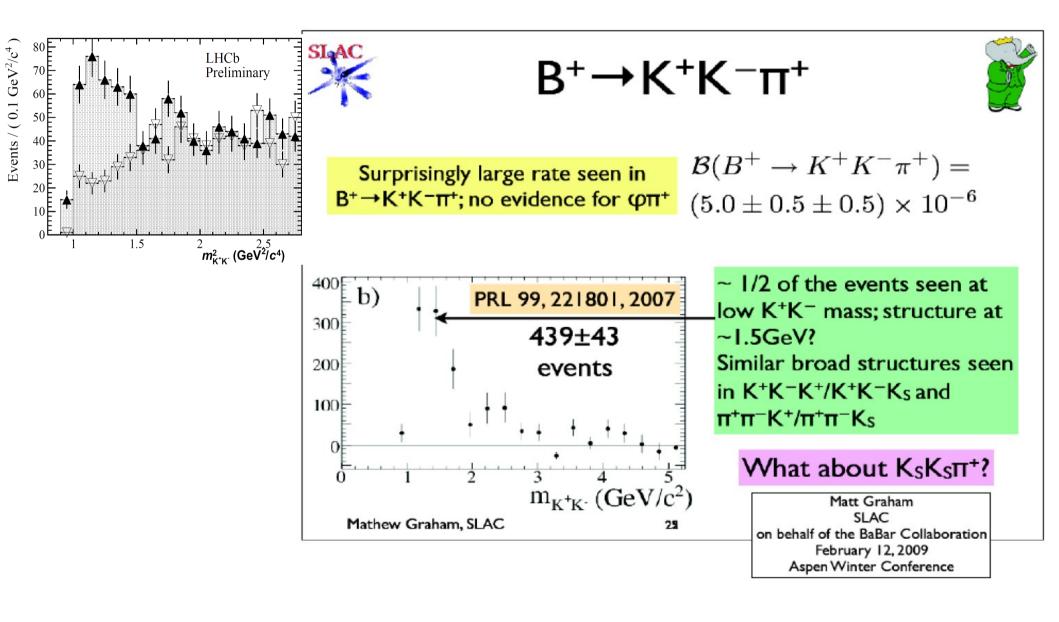


 $A_{cn}(B^{\pm} \rightarrow \pi\pi\pi \text{ region}) = +0.622 \pm 0.075(\text{stat}) \pm 0.032(\text{syst}) \pm 0.007 (J/\psi K^{\pm})$



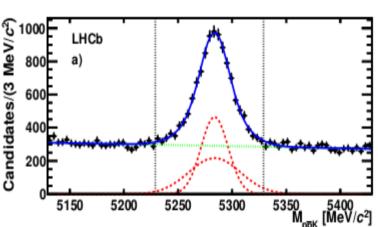
$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ Dalitz plot

$B^{\pm} \to \pi^{\pm} K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$ zoom in large CPV region


 $A_{cn}(B^{\pm} \rightarrow \pi KK \text{ region}) = -0.671 \pm 0.067(\text{stat}) \pm 0.028(\text{syst}) \pm 0.007 (J/\psi K^{\pm})$

25

• BaBar have similar results (but they didn't divide their sample in B⁺ and B⁻):

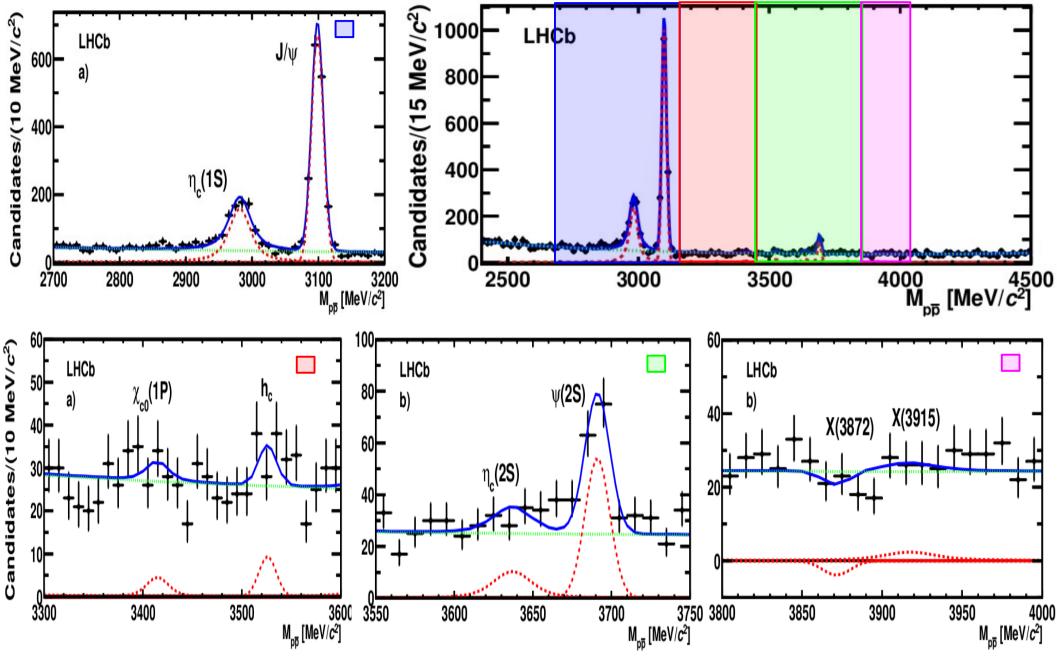


Measurements of the BR of $B^+ \rightarrow ppK^+$ decays

- Selection explores the decay topology:
 - Tracks with high momentum and transverse momentum.
 - Tracks with large impact parameters with respect to the interaction point.
 - B candidate with large flight distance, momentum and small impact parameter with respect to interaction point. B[±]: 6951 ± 176
- A (BDT) selection is trained after the first selection:
 - Simulation used as signal sample.
 - Data from sidebands used as background events.
- Particle ID used to separate protons from kaons and pions.
- Paper reports the measurement of the ration of branching fractions:

$$\mathcal{R}(\text{mode}) = \frac{\mathcal{B}(B^+ \to \text{mode} \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} = \frac{N_{\text{mode}}}{N_{J/\psi}} \times \frac{\epsilon_{J/\psi}}{\epsilon_{\text{mode}}}$$

"Mode" holds for intermediate states together with a kaon and ϵ is the total selection efficiency.



LHCb-PAPER-2012-047

27

$B^+ \rightarrow p\bar{p}K^+$ intermediate states

 $B^+ \rightarrow ppK^+$ results

• Yields summary:

B^+ decay mode	Signal yield	Upper limit (95% CL)
$p\bar{p}K^+$ [total]	6951 ± 176	
$p\bar{p}K^+ [M_{p\bar{p}} < 2.85 \mathrm{GeV}/c^2]$	3238 ± 122	
$J/\psi K^+$	1458 ± 42	
$\eta_c(1S)K^+$	856 ± 46	
$\psi(2S)K^+$	107 ± 16	
$\eta_c(2S)K^+$	39 ± 15	< 65.4
$\chi_{c0}(1P)K^+$	15 ± 13	< 38.1
$h_c(1P)K^+$	21 ± 11	< 40.2
$X(3872)K^{+}$	-9 ± 8	< 10.3
$X(3915)K^{+}$	13 ± 17	< 42.1

- Relatives branching fractions and upper limits for $\eta_c(2S)$ and X(3872):

$$\begin{aligned} \frac{\mathcal{B}(B^+ \to p\bar{p}K^+)_{\text{total}}}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} = &4.91 \pm 0.19 \text{ (stat)} \pm 0.14 \text{ (syst)}, \\ \frac{\mathcal{B}(B^+ \to p\bar{p}K^+)_{M_{p\bar{p}} < 2.85 \text{ GeV}/c^2}}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} = &2.02 \pm 0.10 \text{ (stat)} \pm 0.08 \text{ (syst)}, \\ \frac{\mathcal{B}(B^+ \to \eta_c(1S)K^+ \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} = &0.578 \pm 0.035 \text{ (stat)} \pm 0.025 \text{ (syst)}, \\ \frac{\mathcal{B}(B^+ \to \psi(2S)K^+ \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} = &0.080 \pm 0.012 \text{ (stat)} \pm 0.009 \text{ (syst)}. \end{aligned}$$

$$\begin{aligned} \frac{\mathcal{B}(\eta_c(2S) \to p\bar{p})}{\mathcal{B}(\eta_c(2S) \to K\bar{K}\pi)} < 3.1 \times 10^{-2} \\ \frac{\mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3} \end{aligned}$$

• Evidence of CPV in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ LHCb-CONF-2012-018 preliminary $\mathcal{L} = 1.0 \text{ fb}^{-1}$

$$\begin{split} A_{cp}(B^{\pm} \to K\pi\pi) &= +0.034 \pm 0.009(\text{stat}) \pm 0.004(\text{syst}) \pm 0.007(J/\psi K^{\pm}) \\ A_{cp}(B^{\pm} \to KKK) &= -0.046 \pm 0.009(\text{stat}) \pm 0.005(\text{syst}) \pm 0.007(J/\psi K^{\pm}) \end{split}$$

• Evidence of CPV in $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ LHCb-CONF-2012-028 preliminary $\mathcal{L} = 1.0 \text{ fb}^{-1}$

$$\begin{split} A_{cp}(B^{\pm} \to \pi \pi \pi) &= +0.120 \pm 0.020(\text{stat}) \pm 0.019(\text{syst}) \pm 0.007(J/\psi K^{\pm}) \\ A_{cp}(B^{\pm} \to \pi K K) &= -0.153 \pm 0.046(\text{stat}) \pm 0.019(\text{syst}) \pm 0.007(J/\psi K^{\pm}) \end{split}$$

• Observation of very high CPV in regions of the Dalitz plot

 $\begin{aligned} A_{cp}(B^{\pm} \to \pi \pi \pi \text{ region}) &= +0.622 \pm 0.075(\text{stat}) \pm 0.032(\text{syst}) \pm 0.007(\text{J/}\psi\text{K}^{\pm}) \\ A_{cp}(B^{\pm} \to \pi \text{KK region}) &= -0.671 \pm 0.067(\text{stat}) \pm 0.028(\text{syst}) \pm 0.007(\text{J/}\psi\text{K}^{\pm}) \end{aligned}$

4.2σ 3.0σ

7.6σ

9.2σ

2.8σ

3.7σ

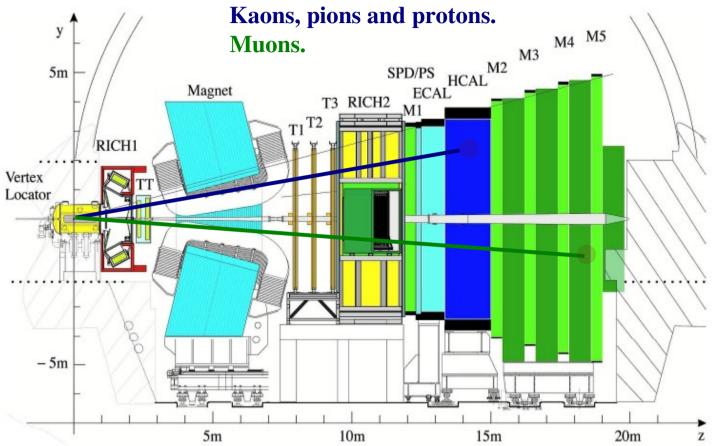
• Measurements of the branching fraction of $B^+ \rightarrow p\overline{p}K^+$ decays. LHCb-PAPER-2012-047 preliminary $\mathcal{L} = 1.0 \text{ fb}^{-1}$

$$\begin{aligned} \frac{\mathcal{B}(B^+ \to p\bar{p}K^+)_{\text{total}}}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} &= 4.91 \pm 0.19 \text{ (stat)} \pm 0.14 \text{ (syst)}, \\ \frac{\mathcal{B}(B^+ \to p\bar{p}K^+)_{M_{p\bar{p}}<2.85 \text{ GeV}/c^2}}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} &= 2.02 \pm 0.10 \text{ (stat)} \pm 0.08 \text{ (syst)}, \\ \frac{\mathcal{B}(B^+ \to \eta_c(1S)K^+ \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} &= 0.578 \pm 0.035 \text{ (stat)} \pm 0.025 \text{ (syst)}, \\ \frac{\mathcal{B}(B^+ \to \psi(2S)K^+ \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} &= 0.080 \pm 0.012 \text{ (stat)} \pm 0.009 \text{ (syst)}. \end{aligned}$$

• The upper limits obtained challenges some predictions for the molecular interpretations of the X(3872):

G. Chen, et. al: PRD 77, (2008) 097501 and E. Braaten, et. al: PRD 77, (2008) 034019

$$\frac{\mathcal{B}(\eta_c(2S) \to p\bar{p})}{\mathcal{B}(\eta_c(2S) \to K\bar{K}\pi)} < 3.1 \times 10^{-2}$$
$$\frac{\mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3}$$


Three times more statistics available. New results soon!

Backup

LHCb Overview

JINST 3 (2008) S08005

- Excellent tracking and vertexing for B and D decays.
- Excellent particle identification.
- Kaons, pions and protons travels through substantial amount of material.
 - Possible detection asymmetry is accounted for.

point.

Final selection for $B \rightarrow hhh$, h = K or π

	713.0	
• Trigger decision:	Variables	Selection cuts
• Hardware trigger (L0) to select a hadron with	Tracks P _T	> 0.1 GeV/c
high transverse energy.	Tracks P	> 1.5 GeV/c
• Software trigger (Hlt) to select hadrons with	Tracks $IP\chi^2$	> 1
high transverse momentum and coming from	Tracks $\chi^2/n.d.f.$	< 3
the same decaying vertex	Sum of P_T of tracks	> 4.5 GeV/c
	Sum of $IP\chi^2$ of tracks	> 200
• PID selection:	P_T of the highest- P_T track	> 1.5 GeV/c
• $\Delta \log \mathcal{L}_{K_{\pi}} > 4$ for kaons and $\Delta \log \mathcal{L}_{K_{\pi}} < 0$ for	P_T of the second highest- P_T track	> 0.9 GeV/c
	IP of the highest- P_T track	> 0.05 mm
pions.	Maximum DOCA	< 0.2 mm
• Muon veto : $\Delta \log \mathcal{L}_{\mu\pi} < 5$ to exclude the	B^{\pm} candidate M_{KKK}	$5.05 - 6.30 \text{ GeV/c}^2$
control channel (see below).	B^{\pm} candidate M_{KKK}^{COR}	$4-7 \text{ GeV/c}^2$
• Cuts on invariant masses $m_{\pi\pi}$, $m_{K\pi}$ and m_{KK}	B^{\pm} candidate M^{COR}	$< 5.8 \text{ GeV}/c^2$
to exclude charm background.	B^{\pm} candidate IP χ^2	< 10
	B^{\pm} candidate P_{T}	> 1.7 GeV/c
• Offline selection explore the decay topology:	Distance from SV to any PV	> 3 mm
• Tracks momenta and impact parameter with	Secondary Vertex χ^2	< 12
respect to interaction point and decaying	B^{\pm} candidate $\cos(\theta)$	> 0.99998
vertex.	B^{\pm} Pointing angle	< 0.1
• B candidate flight distance, momentum and	B^{\pm} Flight Distance χ^2	> 700
impact parameter with respect to interaction	Number of long tracks in the event	< 200

$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Fit function

- We performed an unbinned extended likelihood fit to the B^{\pm} invariant mass
- Signal PDF model:
 - Sum of a Crystal Ball and a Gaussian
 - Common mean and different widths for the two functions.
 - Fractions and Crystal Ball parameters extracted from MC and fixed to data.
 - Widths for both Crystal Ball and Gaussian determined from the fit to full data.
- Combinatorial background PDF model:
 - Exponential function with one free parameter for the slope.
- Peaking and partial backgrounds PDF model:
 - Modified Gaussian with shapes extracted from MC and fixed to data for peaking and partial backgrounds.
 - Fractions extracted from MC for peaking background and left float in the fit for partial background.

Signal PDF: Gaussian + Crystal Ball.

 $F_{S}(m) = f_{sig}\mathcal{G}(m; m_{0}, \sigma_{1}) + (1 - f_{sig})\mathcal{C}(m; m_{0}, \sigma_{2}, a, n)$

Background PDF: Modified Gaussian.

$$F_i(m) = N_i \exp\left[\frac{-(m-\mu_i)^2 \beta_i(m)}{2\sigma_{R_i}^2}\right], \qquad \beta_i(m) = \exp(-2\lambda_i(m-\mu_i))$$
35

$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ systematics and results

- Signal PDF: floated parameters in the fit procedure and two Crystal Balls used.
- Signal shape: signal yield from the difference between the total number of events and the background integral inside signal region.
- Background model: background fraction varied for both $K\pi\pi$ and KKK modes.
- Background charge asymmetry: fit with 100% charge asymmetry for the peaking background components.
- Acceptance: raw asymmetry corrected by the efficiency in each bin of the phase space.
- Subtraction method: kinematic variables of the kaon from control channel were weighted to match the same distribution from the signal kaon.

Contribution	$\operatorname{Syst}(K^{\pm} \pi^{+} \pi^{-})$	$Syst(K^{\pm} K^+ K^-)$
Signal fixed parameters	0.002	0.002
Signal model	0.0001	0.0001
Signal shape	0.0012	0.0001
Background model	0.0003	0.00002
Background asymmetry	0.0002	0.0001
Acceptance	0.001	0.0015
Trigger correction	0.0011	0.001
Subtraction method	0.0035	0.0012
Total	0.0045	0.0030

$A_{co}(B^{\pm} \rightarrow K\pi\pi) = +0.034 \pm 0.009(stat) \pm 0.004(syst) \pm 0.007*$
$A_{cn}^{-r}(B^{\pm} \to KKK) = -0.046 \pm 0.009(stat) \pm 0.005(syst) \pm 0.007*$

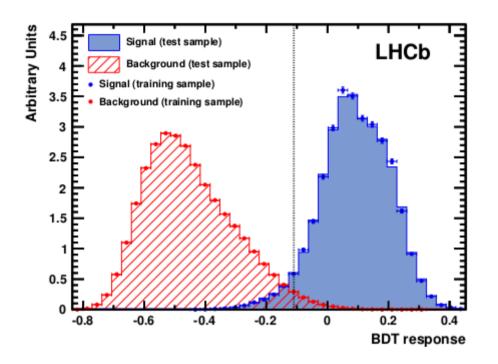
* J/ $\psi K A_{_{CP}}$ uncertainty quoted separately.

 $\begin{array}{l} A_{cp}(B^{\pm} \to K\pi\pi) = +0.038 \pm 0.022 \\ A_{cp}(B^{\pm} \to KKK) = -0.017 \pm 0.030 \end{array} \begin{array}{c} 36 \end{array}$

$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ Fit function

- We performed an unbinned extended likelihood fit to the B^{\pm} invariant mass.
- Signal PDF model:
 - Crystal Ball function.
 - Crystal Ball radiative tail parameters extracted from MC and fixed to data.
 - Crystal Ball mean and width extracted from the combined B⁺/B⁻ data and fixed to the individual B⁺ and B⁻ fits.
- Combinatorial background PDF model:
 - Exponential function with one free parameter for the slope for $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$.
 - A modified Gaussian for $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$.
- Peaking and partial backgrounds PDF model:
 - Modified Gaussian with shapes extracted from MC and fixed to data for peaking and partial backgrounds for $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$.
 - Negligible for $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$.

$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ systematics and results


- Fit function: signal yield from the difference between the total number of events and the background integral inside signal region.
- Acceptance efficiency: error of the efficiency correction R.
- Kaon kinematics: the $B^{\pm} \rightarrow J/\psi K^{\pm}$ raw asymmetry in bins of kaon momentum is weighted by the ratio of K⁻ and K⁺ efficiencies from $D^0 \rightarrow K^+K^-$ sample.
- Kaon instrumental asymmetry: the statistical uncertainty of the kaon instrumental asymmetry was included as a systematic since it came from another analysis.
- Pion instrumental asymmetry: the statistical uncertainty of the pion instrumental asymmetry was included as a systematic since it came from another analysis.

Contribution	$\pi\pi\pi$	$KK\pi$
Fit function model	0.008	0.009
Acceptance	0.015	0.014
$A_{\rm D}^K$ kaon kinematics	0.008	0.008
$A_{\rm D}^K$ stat. uncertainty	0.002	0.002
$A_{\rm D}^{\pi}$ stat. uncertainty	0.003	0.003
Total	0.019	0.019

$A_{cp}(B^{\pm} \to \pi\pi\pi) = +0.120 \pm 0.020(\text{stat}) \pm 0.019(\text{syst}) \pm 0.0079$ $A_{cp}(B^{\pm} \to \pi \text{KK}) = -0.153 \pm 0.046(\text{stat}) \pm 0.019(\text{syst}) \pm 0.0079$				
	* J/ ψ K A _{cp} uncertainty quoted separately.			
_	$\begin{aligned} A_{cp}(B^{\pm} \to \pi \pi \pi) &= +0.032 \pm 0.044(\text{stat}) \stackrel{+0.040}{_{-0.037}}(\text{syst}) \\ A_{cp}(B^{\pm} \to \pi \text{KK}) &= -0.00 \pm 0.10(\text{stat}) \pm 0.03(\text{syst}) \end{aligned}$	PDG 38		

- The p_T of each track_:
- Sum of the daughters' p_T;
- Sum of the $IP\chi^2$ of the three daughter tracks with respect to the primary vertex;
- IP of the daughter with the hightest p_T with respect to the primary vertex;
- The number of daughters with p_T > 900 MeV/c;
- Maximum distance of closest approach between any two daughters;
- IP of the B candidate with respect to any primary vertex;
- Distance between the primary and secondary vertices;
- The angle between the flight direction and the z axis of the detector; $P \sin \theta$
- The pointing variable defined as: $\frac{P \sin \theta}{P \sin \theta + \sum_{i} p_{T,i}}$
- The log likelihood difference for each daughter between the assumed PID hypothesis and the pion hypothesis.

• The BDT response is chosen in order to have a signal over background ratio of the order of unity and this corresponds to a response value of -0.11.

• The BDT response efficiency is grater than 92% with a background rejection of 86%.

Table 2: Relative systematic uncertainties (in %) on the relative branching fractions from different sources. The total systematic uncertainty is determined by adding the individual contributions in quadrature.

Source	$\mathcal{R}(ext{total}$) $\mathcal{R}(M_{p\bar{p}} < 2$	$2.85{ m GeV}/c^2)$	$\mathcal{R}(\eta_c(1S))$	$\mathcal{R}(\psi(2S))$
Efficiency ratio	iciency ratio 0.21 0.5		0.5	3.3	4.8
B^+ mass fit range	0.16	(0.5		_
Sig. and Bkg. shap	e 2.5	:	3.6	1.8	6.5
B^+ mass window	0.6	(0.6	0.9	3.8
Non-signal compone	ent –		_		5.1
Signal tail param.	1.0		1.0	1.2	4.3
Total	2.8	:	3.8	4.1	11.3
Source	$\mathcal{R}(\eta_c(2S))$	$\mathcal{R}(\chi_{c0}(1P))$	$\mathcal{R}(h_c(1P))$	$\mathcal{R}(X(3872))$	$\mathcal{R}(X(3915))$
Efficiency ratio	4.4	2.5	3.4	6.5	7.0
B^+ mass fit range	—	_	—	—	
Sig. and Bkg. shape	3.9	3.3	14.3	5.6	10.1
B^+ mass window	11.3	23.6	23.6	17.5	7.5
Non-signal component	—	_	_	—	-
Signal tail param.	1.0	1.0	1.0	1.0	1.0
Total	12.8	24.0	27.8	19.5	15.5