CHARGE ASYMMETRIES. IN SEMIILEPTONIC B DECAYS

Iain Bertram
for the DO Collaboration

Beauty 2013 - Bologna 8 April 2013

Anomalous like-sign dimuon asymmetry

$$
\begin{aligned}
A_{s l}^{b} & \equiv \frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{--}} \\
& =C_{d} a_{s l}^{d}+C_{s} a_{s l}^{s}
\end{aligned}
$$

$$
\text { where } a_{s l}^{q}=\frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \phi_{q}
$$

arxiv.org:1106.6308 PRD 84052007 (2011)

$C_{d(s)}$ is the fraction of $B_{d}\left(B_{s}\right)$ events in the data sample.

D0 - Dimuon Charge Asymmetry

$$
A_{s l}^{b}=(-0.787 \pm 0.172(\text { stat }) \pm 0.093(\text { syst })) \%
$$

- Anomalous Dimuon - 3.9 deviation from SM expectations
- Split the data (blue band, grey band):

$$
\begin{aligned}
a_{\mathrm{sl}}^{d} & =(-0.12 \pm 0.52) \% \\
a_{\mathrm{sl}}^{s} & =(-1.81 \pm 1.06) \%
\end{aligned}
$$

Semi-leptonic Charge asymmetries

$a_{\mathrm{sl}}^{q}=\frac{\Gamma\left(\bar{B}_{q}^{0} \rightarrow B_{q}^{0} \rightarrow \ell^{+} \nu X\right)-\Gamma\left(B_{q}^{0} \rightarrow \bar{B}_{q}^{0} \rightarrow \ell^{-} \bar{\nu} \bar{X}\right)}{\Gamma\left(\bar{B}_{q}^{0} \rightarrow B_{q}^{0} \rightarrow \ell^{+} \nu X\right)+\Gamma\left(B_{q}^{0} \rightarrow \bar{B}_{q}^{0} \rightarrow \ell^{-} \bar{\nu} \bar{X}\right)}$,

$$
a_{\mathrm{sl}}^{q}=\frac{A-A_{\mathrm{bg}}}{F_{B_{q}^{0}}^{\text {osc }}}
$$

$$
A=\frac{N\left(\mu^{+} D_{q}^{(*)-}\right)-N\left(\mu^{-} D_{q}^{(*)+}\right)}{N\left(\mu^{+} D_{q}^{(*)-}\right)+N\left(\mu^{-} D_{q}^{(*)+}\right)}
$$

- Use lepton charge to identify the B-meson flavour
- Correct for detector and physics background asymmetries
- Scale by the fraction of mixed events (using MC simulations)
- Assume no production asymmetry, no direct CP violation in charged D-mesons or B-meson semileptonic decay, only CP violation in mixing for B mesons.

Kaon Corrections

- K^{+}and K^{-}have very different interaction cross sections
- Use the decay $K^{*} \rightarrow K \pi$ to measure the asymmetry as a function of momentum and η

Residual Muon and Track Asymmetries

- The residual muon Pт dependent reconstruction asymmetry between +ve and -ve tracks is measured using $\mathrm{J} / \Psi \rightarrow \mu \mu$ in a tag and probe analysis.
- Tracking asymmetry studied with $\mathrm{K}_{s} \rightarrow \pi \pi, \mathrm{~K}^{*} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi$, plus other resonances showing no measurable correction
- See $<0.05 \%$ effects in MC for pions - apply as a systematic

$\mathrm{a}^{\mathrm{s}} \mathrm{sl}$ in $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mu^{+} \mathrm{D}_{\mathrm{s}}{ }^{-}$

- Select Data Sample from $10.4 \mathrm{fb}^{-1}$
- Extract raw asymmetry by fitting D_{s} resonance in the invariant mass spectrum:

$$
A=\frac{N_{\mu^{+} D_{s}^{-}}-N_{\mu^{-} D_{s}^{+}}}{N_{\mu^{+} D_{s}^{-}}+N_{\mu^{-} D_{s}^{+}}},
$$

- Correct for residual muon and tracking reconstruction asymmetries.
- Correct for dilution.

$$
\left(a_{\mathrm{sl}}^{s} \cdot F_{B_{s}^{\mathrm{os}}}^{\mathrm{osc}}=A-A_{\mu}-A_{\text {track }}-A_{K K}\right)
$$

Small Kaon correction due to Ф-fo(980) interference.
Belle: PRL I08, 071801 (20I2)

The raw asymmetry A

- Non-lifetime biasing cuts + Log Likelihood ratio cut
- Blinded sensitivity tests performed
- Sum and difference fitted simultaneously

- $F($ sum $)=F_{s}\left(D_{s}\right)+F_{s}(D)+F_{b}$
- $\mathrm{F}(\mathrm{diff})=A F_{s}\left(\mathrm{D}_{\mathrm{s}}\right)+\mathrm{A}_{\mathrm{D}} \mathrm{F}_{\mathrm{s}}(\mathrm{D})+\mathrm{A}_{\mathrm{b}} \mathrm{F}_{\mathrm{b}}$

$$
\begin{aligned}
A=[-0.40 & \pm 0.33 \text { (stat.) } \\
& \pm 0.05 \text { (syst.) }] \%
\end{aligned}
$$

- Apply corrections of

$$
\begin{gathered}
A_{\mathrm{bg}}=[0.11 \pm 0.06 \text { (syst.) }] \% \\
A_{K K}=[0.020 \pm 0.002 \text { (syst) }] \%
\end{gathered}
$$

Dilution - $\left(\mathrm{B}_{s / d}\right)$

- Model $\mu \mathrm{D}_{\mathrm{q}}$ events with Pythia , EvtGen, \& Geant
- Weight events to match
- B meson lifetimes and mixing parameters
- B_{s} fraction that have mixed is essentially 50%.
- In B_{s} analysis contamination from oscillated B_{d} 's is 0.5% (assuming a $\mathrm{I} \%$ asymmetry in B_{d} implies a 0.005% effect)

$$
\begin{gathered}
P\left(B_{s}^{0} \rightarrow \bar{B}_{s}^{0}\right)=\frac{1}{2}\left[1-\frac{\cos \left(\Delta M_{s} \cdot t\right)}{\cosh \left(\Delta \Gamma_{s} \cdot t\right)}\right], \quad P\left(B_{d}^{0} \rightarrow \bar{B}_{d}^{0}\right)=\frac{1}{2}\left[1-\frac{\cos \left(\Delta M_{d} \cdot t\right)}{\cosh \left(\Delta \Gamma_{d} \cdot t\right)}\right] \\
F_{B_{s}^{0}}^{\mathrm{OSC}}=0.465 \pm 0.017
\end{gathered}
$$

$$
\left.a_{\mathrm{sl}}^{s}=[-1.12 \pm 0.74(\text { stat }) \pm 0.17(\text { syst })] \%\right)
$$

- World's best published measurement
- Consistent with like-sign dimuon result
- PRL IIO,01I80I (2013)

$\mathrm{a}^{\mathrm{d}}{ }_{\mathrm{sl}}$ in $\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mu^{+} D^{(*)-}$

- Measure $a^{\mathrm{d}}{ }_{\mathrm{sl}}$ in two channels in a binned lifetime analysis.

$$
B_{d}^{0} \rightarrow \mu^{+} \nu D^{-} X
$$

$$
B_{d}^{0} \rightarrow \mu^{+} \nu \dot{D}^{*-} X
$$

Lifetime Bins
$-0.10-0.00 \mathrm{~cm}$
$0.00-0.02 \mathrm{~cm}$
$0.02-0.05 \mathrm{~cm}$
$0.05-0.10 \mathrm{~cm}$
$0.10-0.20 \mathrm{~cm}$
$0.20-0.60 \mathrm{~cm}$

$a^{d}{ }_{s l}$ in $B_{d}{ }^{0} \rightarrow \mu^{+} D^{(*)-}$

- Measure $a^{d_{s l}}$ in two channels in a binned lifetime analysis.

$$
B_{d}^{0} \rightarrow \mu^{+} \nu D^{-} X \quad B_{d}^{0} \rightarrow \mu^{+} \nu D^{*-} X
$$

- Use the first two lifetime bins as a control region to test corrections as expect no mixing.

Lifetime Bins
$-0.10-0.00 \mathrm{~cm}$
$0.00-0.02 \mathrm{~cm}$
$0.02-0.05 \mathrm{~cm}$
$0.05-0.10 \mathrm{~cm}$
$0.10-0.20 \mathrm{~cm}$
$0.20-0.60 \mathrm{~cm}$

Mass Distributions $-0.10-0.20 \mathrm{~cm}$

$$
B_{d}^{0} \rightarrow \mu^{+} \nu D^{-} X
$$

Extract a ${ }_{\text {d }}^{\text {s }}$: PRD 86, 072009 (2012)

$$
B_{d}^{0} \rightarrow \mu^{+} \nu D^{-} X
$$

$$
B_{d}^{0} \rightarrow \mu^{+} \nu D^{*-} X
$$

$$
\begin{aligned}
a_{\mathrm{sl}}^{d}(\mu D)= & {[0.43 \pm 0.63(\mathrm{stat}) \pm 0.16(\mathrm{syst})] \% } \\
a_{\mathrm{sl}}^{d}\left(\mu D^{*}\right)= & {[0.92 \pm 0.62(\text { stat }) \pm 0.16(\mathrm{syst})] \% } \\
& \text { Weighted Average }
\end{aligned}
$$

$$
a_{\mathrm{sl}}^{d}=[0.68 \pm 0.45(\text { stat }) \pm 0.14(\text { syst })] \%
$$

Alternative Extraction

- Fit observed asymmetry ($\mathrm{A}-\mathrm{A}_{\mathrm{bg}}$) to expectedVPDL dependence

$$
F(\mathrm{VPDL})=A_{\text {const }}+F_{B^{0}}^{\mathrm{osc}}(\mathrm{VPDL}) \cdot a_{\mathrm{sl}}^{d}
$$

$a_{\mathrm{sl}}^{d}=(0.51 \pm 0.86) \%$
Compare with $(0.43 \pm 0.65) \%$ from nominal method
$A_{\text {const }}=(-0.03 \pm 0.23) \%$

Consistent with no residual asymmetries.

Cross Checks

- Repeat analysis using pairs of orthogonal sub-sets of the data to check stability
- Forward/Backward
- Forward/Central
- Low/High Momentum

- Early/Late Running
- Also different muon selections, and detector coverage
- All measurements are consistent

Combination of DO Results

- Combine all three D0 measurements (including correlations)

$$
\begin{aligned}
a_{\mathrm{sl}}^{s} & =(-1.73 \pm 0.56) \% \\
a_{\mathrm{sl}}^{d} & =(0.11 \pm 0.30) \% \\
\rho & =-0.51
\end{aligned}
$$

- $\mathrm{X}^{2}=2.80 / 2$ dof
- p-value(SM) $=0.33 \%$
2.9 standard deviations
- a^{5} si is 3.1 standard deviations from zero

Including B-Factory a ${ }^{\mathrm{d}} \mathrm{s} \mid$

- Average new D0 result with FAG PD 2012 average of B-Factory results: $\mathrm{a}^{\mathrm{d}}{ }_{\mathrm{sl}}=(0.38 \pm 0.36) \% \quad$ arXiv:1207.1158
- Combine with D0 dimuon and $\mathrm{a}^{\mathrm{s}} \mathrm{s}$

$$
\begin{aligned}
a_{\mathrm{sl}}^{s} & =(-1.71 \pm 0.55) \% \\
a_{\mathrm{sl}}^{d} & =(0.07 \pm 0.27) \% \\
\rho & =-0.46
\end{aligned}
$$

$X^{2}=1.89 / 2$ doff
p-value(SM) $=0.34 \%$,
2.93 standard deviations from SM

Before these analyses
$\mathrm{a}_{\mathrm{sl}}^{\mathrm{d}}$

$$
\begin{aligned}
a_{\mathrm{sl}}^{d} & =(-0.12 \pm 0.52) \% \\
a_{\mathrm{sl}}^{s} & =(-1.81 \pm 1.06) \% .
\end{aligned}
$$

- Presented new measurements of $a^{d}{ }_{s l}$ and $a^{s}{ }_{s l}$ in exclusive final states.
- Both are the world's most precise single experiment measurements.

$$
a_{\mathrm{sl}}^{s}=[-1.12 \pm 0.74(\mathrm{stat}) \pm 0.17(\mathrm{syst})] \%
$$

$a_{\mathrm{sl}}^{d}=[0.68 \pm 0.45(\mathrm{stat}) \pm 0.14(\mathrm{syst})] \%$

- Both measurements are consistent with the anomalous like-sign dimuon charge asymmetry
- Combined value of a^{s} sl is significantly different from the SM $(-I .73 \pm 0.56) \%$: 3.1 standard deviations from zero.
- Final update on anomalous like-sign dimuon asymmetry this summer hopefully (effectively doubling statistics for IP measurement).

Charge Asymmetries via mixing in Semileptonic $\mathrm{B}_{\mathrm{d}, \mathrm{s}}$ Decays

- D0 a ${ }_{\text {s }}$ s result PRL 110, 011801 (2013)

$$
a_{\mathrm{sl}}^{s}(\mathrm{D} 0)=(-1.12 \pm 0.75) \%^{\sigma^{0}}
$$

- Preliminary LHCb result

LHCb-CONF-2012-022
$a_{\mathrm{sl}}^{s}(\mathrm{LHCb})=(-0.24 \pm 0.63) \%$

- All results are consistent
- $X^{2}=0.80$ for $\mathrm{a}^{5}{ }_{\text {sl }}$ combination
- Average of $B_{s}{ }^{0} \rightarrow \mu^{+} D_{s}{ }^{-}$ $\mathrm{a}^{\mathrm{s}}{ }^{\mathrm{s}}$ results:
$a_{\mathrm{sl}}^{s}\left(B_{s}^{0}\right)=(-0.60 \pm 0.49) \%$ -0.04
- Combine with preliminary D0 and B-Factory a ${ }^{\mathrm{d}}$ and D0 like sign dimuon charge asymmetry

$$
\begin{aligned}
a_{\mathrm{sl}}^{s} & =(-1.07 \pm 0.41) \% \\
a_{\mathrm{sl}}^{d} & =(-0.07 \pm 0.25) \% \\
\rho & =-0.36
\end{aligned}
$$

Backup

Combination Details

- Page 16: Only using D0 Results
- Make full use of the correlations between uncertainties of the IP dependence of the like sign dimuon anomalous likesign dimuon charge asymmetry.
- The $a^{d}{ }_{\text {sl }}$ and $a^{s}{ }^{s}$ measurements are assumed to be independent as they are dominated by the statistical uncertainty (There is correlation in some of the systematic uncertainties).

$$
a_{\mathrm{sl}}^{q}=\frac{|p / q|_{d(s)}^{2}-|q / p|_{d(s)}^{2}}{|p / q|_{d(s)}^{2}+|q / p|_{d(s)}^{2}}
$$

Combination Details

- Page 16: D0 Anomalous Dimuon Asymmetry, D0 a ${ }_{\mathrm{s} / \mathrm{and}}$ as ${ }_{\mathrm{s} \mid}$ and B -factory combination of $\mathrm{a}_{\mathrm{s}}^{\mathrm{d}}$.
- We combine the DO and B-Factory values of ${ }^{\mathrm{d}}{ }_{\mathrm{s}}$ before carrying out the 2-D combination.
- The combined D0 and B-Factory values of $\mathrm{a}_{\mathrm{s}}^{\mathrm{d}}$ is:

$$
a_{\mathrm{sl}}^{d}=(0.38 \pm 0.36) \%
$$

Combination Details

- Page 16: D0 Anomalous Dimuon Asymmetry, D0 a ${ }_{\mathrm{s} \text { s }}$ and $\mathrm{a}^{\mathrm{s}}{ }_{\mathrm{s} \mid}$ and B -factory combination of $\mathrm{a}_{\mathrm{s}}^{\mathrm{d}}$.
- Current HFAG average has uncertainties of
 measurements.
- Our combination

$$
\begin{aligned}
& \begin{array}{l}
a_{\mathrm{sl}}^{s}=(-1.73 \pm 0.56) \% \\
a_{\mathrm{sl}}^{d}=(0.11 \pm 0.30) \% \\
\rho=-0.51
\end{array} \\
& |q / p|_{s}=1.0115 \pm 0.0028 \\
& |q / p|_{d}=0.9980 \pm 0.0015
\end{aligned}
$$

Combination with LHCb

- HFAG PDG 2012 average of B-Factory results: $\mathrm{a}^{\mathrm{d}}{ }_{\text {sl }}=(-0.05 \pm 0.56) \%$

$$
\begin{aligned}
a_{\mathrm{sl}}^{s} & =(-0.88 \pm 0.42) \% \\
a_{\mathrm{sl}}^{d} & =(-0.37 \pm 0.30) \% \\
\rho & =-0.42
\end{aligned}
$$

