CHARGE ASYMMETRIES INSEMPLEPTONIC B DECAYS

Iain Bertram for the DO Collaboration

Beauty 2013 - Bologna

8 April 2013

Anomalous like-sign dimuon asymmetry

arxiv.org:1106.6308 PRD 84 052007 (2011)

 $C_{d(s)}$ is the fraction of $B_d(B_s)$ events in the data sample.

- Use lepton charge to identify the B-meson flavour
- Correct for detector and physics background asymmetries
- Scale by the fraction of mixed events (using MC simulations)
- Assume no production asymmetry, no direct CP violation in charged D-mesons or B-meson semileptonic decay, only CP violation in mixing for B mesons.

- K^+ and K^- have very different interaction cross sections
- Use the decay $K^* \rightarrow K\pi$ to measure the asymmetry as a function of momentum and η

Residual Muon and Track Asymmetries

- The residual muon p_T dependent reconstruction asymmetry between +ve and -ve tracks is measured using J/ $\psi \rightarrow \mu\mu$ in a tag and probe analysis.
- Tracking asymmetry studied with $K_s \rightarrow \pi\pi$, $K^* \rightarrow K_s\pi$, plus other resonances showing no measurable correction
- See <0.05% effects in MC for pions apply as a systematic

 B_s^0

人

 μ^+

- Select Data Sample from 10.4 fb⁻¹
- Extract raw asymmetry by fitting D_s resonance in the invariant mass spectrum:

$$A = \frac{N_{\mu^+ D_s^-} - N_{\mu^- D_s^+}}{N_{\mu^+ D_s^-} + N_{\mu^- D_s^+}},$$

- Correct for residual muon and tracking reconstruction asymmetries.
 - $a_{\rm sl}^s \cdot F_{B_s^0}^{\rm osc} = A A_\mu A_{\rm track} A_{KK}$

Vμ

- Correct for dilution.
- Unblind after corrections are finalised

Small Kaon correction due to Φ -f₀(980) interference. Belle: PRL 108, 071801 (2012)

The raw asymmetry A

- Blinded sensitivity tests performed
- Sum and difference fitted simultaneously
- $F(sum) = F_s(D_s) + F_s(D) + F_b$
- $F(diff) = AF_s(D_s) + A_DF_s(D) + A_bF_b$

 $A = [-0.40 \pm 0.33 \,(\text{stat.}) \\ \pm 0.05 \,(\text{syst.})] \,\%.$

• Apply corrections of

 $A_{\rm bg} = [0.11 \pm 0.06 \,({\rm syst.})] \%$ $A_{KK} = [0.020 \pm 0.002 \,({\rm syst})] \%$

人

- Model μD_q events with Pythia , EvtGen, & Geant
- Weight events to match
 - B meson lifetimes and mixing parameters
 - B_s fraction that have mixed is essentially 50%.
 - In B_s analysis contamination from oscillated B_d 's is 0.5% (assuming a 1% asymmetry in B_d implies a 0.005% effect)

$$P\left(B_s^0 \to \bar{B}_s^0\right) = \frac{1}{2} \left[1 - \frac{\cos(\Delta M_s \cdot t)}{\cosh(\Delta \Gamma_s \cdot t)} \right], \quad P\left(B_d^0 \to \bar{B}_d^0\right) = \frac{1}{2} \left[1 - \frac{\cos(\Delta M_d \cdot t)}{\cosh(\Delta \Gamma_d \cdot t)} \right]$$
$$F_{B_s^0}^{\text{osc}} = 0.465 \pm 0.017$$

$a_{\rm sl}^s = [-1.12 \pm 0.74 \,({\rm stat}) \pm 0.17 \,({\rm syst})]\,\%$

- World's best published measurement
- Consistent with like-sign dimuon result
- PRL 110, 011801 (2013)

http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B12D/

• Measure $a^{d}{}_{sl}$ in two channels in a binned lifetime analysis. $B^{0}_{d} \rightarrow \mu^{+} \nu D^{-} X$ $B^{0}_{d} \rightarrow \mu^{+} \nu D^{*-} X$

• Measure a^{d}_{sl} in two channels in a binned lifetime analysis.

 $B_d^0 \to \mu^+ \nu D^- X \qquad \qquad B_d^0 \to \mu^+ \nu D^{*-} X$

• Use the first two lifetime bins as a control region to test corrections as expect no mixing.

Extract a^d_{sl}: PRD 86, 072009 (2012)

 $B_d^0 \to \mu^+ \nu D^{*-} X$

 $\begin{aligned} a^d_{\rm sl}(\mu D) &= \left[0.43 \pm 0.63 \, ({\rm stat}) \pm 0.16 \, ({\rm syst}) \right] \% \\ a^d_{\rm sl}(\mu D^*) &= \left[0.92 \pm 0.62 \, ({\rm stat}) \pm 0.16 \, ({\rm syst}) \right] \% \\ & \text{Weighted Average} \end{aligned}$

 $a_{\rm sl}^d = [0.68 \pm 0.45 \,({\rm stat}) \pm 0.14 \,({\rm syst})]\,\%$

Alternative Extraction

Fit observed asymmetry (A - Abg) to expected VPDL dependence

 $F(\text{VPDL}) = A_{\text{const}} + F_{B^0}^{\text{osc}}(\text{VPDL}) \cdot a_{\text{sl}}^d$

Cross Checks

- Repeat analysis using pairs of orthogonal sub-sets of the data to check stability
 - Forward/Backward
 - Forward/Central
 - Low/High Momentum
 - Early/Late Running
 - Also different muon selections, and detector coverage
- All measurements are consistent

Combination of D0 Results

Combine all three 000 00.02
 D0 measurements
 (including correlations)

$$\widehat{a_{sl}^s} = (-1.73 \pm 0.56)\%$$

 $a_{sl}^d = (0.11 \pm 0.30)\%$
 $\rho = -0.51$

- $\chi^2 = 2.80/2 \text{ dof}$
- p-value(SM) = 0.33%
 2.9 standard deviations
- a^ssl is 3.1 standard deviations from zero

Including B-Factory ad_{sl}

- Average new D0 result with HFAG PDG 2012 average of B-Factory results: a^dsl</sub> = (0.38 ± 0.36)% arXiv:1207.1158
- Combine with D0 dimuon and a^ssl

$$a_{sl}^{s} = (-1.71 \pm 0.55) \%$$
$$a_{sl}^{d} = (0.07 \pm 0.27) \%$$
$$\rho = -0.46$$

- $\chi^2 = 1.89/2 \text{ dof}$
- p-value(SM) = 0.34%,
 2.93 standard deviations from SM

- Presented new measurements of a^{d}_{sl} and a^{s}_{sl} in exclusive final states.
- Both are the world's most precise single experiment measurements.

$$a_{\rm sl}^s = [-1.12 \pm 0.74 \,({\rm stat}) \pm 0.17 \,({\rm syst})]\,\%$$

$$a_{\rm sl}^d = [0.68 \pm 0.45 \,({\rm stat}) \pm 0.14 \,({\rm syst})]\,\%$$

- Both measurements are consistent with the anomalous like-sign dimuon charge asymmetry
- Combined value of a_{sl}^{s} is significantly different from the SM (-1.73 ± 0.56)% : 3.1 standard deviations from zero.
- Final update on anomalous like-sign dimuon asymmetry this summer hopefully (effectively doubling statistics for IP measurement).

Charge Asymmetries via mixing in Semileptonic B_{d,s} Decays

D0 a^s_{sl} result PRL 110, 011801 (2013) 0.02 م م $\mathsf{D0}$ D0 Dimuon $a_{\rm sl}^s({\rm D0}) = (-1.12 \pm 0.75)\%$ Analysis Preliminary LHCb result o LHCb LHCb-CONF-2012-022 $a_{\rm sl}^s({\rm LHCb}) = (-0.24 \pm 0.63)\%$ $\mathbf{D0}$ All results are consistent -0.02 D0 a^s_{sl} • $\chi^2 = 0.80$ for $a^{s}{}_{sl}$ combination Preliminary LHCb a^s D0 a_s Average of $B_s^0 \rightarrow \mu^+ D_s^-$ B Factory a **B-factory** $A_{sl}^{b}(IP_{>120}) 68\%$ C.L. $A_{sl}^{b}(IP_{<120}) 68\%$ C.L. -0.04 a^ssl results: average $a_{s1}^{s}(B_{s}^{0}) = (-0.60 \pm 0.49)\%$ Combination Standard Model -0.02 -0.04 0 Combine with preliminary D0 p-value(SM) = 1.4% a_{el}^{a} $a_{\rm sl}^s = (-1.07 \pm 0.41) \%$ 2.5 standard deviations and B-Factory a^d_{sl} and D0 like $a_{\rm sl}^d = (-0.07 \pm 0.25) \%$ $\chi^2 = 4.14/2$ dof sign dimuon charge asymmetry $rac{rac}{\rho} = -0.36$

0.02

- Page 16: Only using D0 Results
 - Make full use of the correlations between uncertainties of the IP dependence of the like sign dimuon anomalous likesign dimuon charge asymmetry.
 - The a^d_{sl} and a^s_{sl} measurements are assumed to be independent as they are dominated by the statistical uncertainty (There is correlation in some of the systematic uncertainties).

$$a_{\rm sl}^q = \frac{|p/q|_{d(s)}^2 - |q/p|_{d(s)}^2}{|p/q|_{d(s)}^2 + |q/p|_{d(s)}^2}$$

- Page 16: D0 Anomalous Dimuon Asymmetry, D0 a^d_{sl} and a^s_{sl} and B-factory combination of a^d_{sl}.
 - We combine the D0 and B-Factory values of a^d_{sl} before carrying out the 2-D combination.
 - The combined D0 and B-Factory values of a^dsl is:

$$a_{\rm sl}^d = (0.38 \pm 0.36)\%$$

- Page 16: D0 Anomalous Dimuon Asymmetry, D0 a^dsl and a^ssl and B-factory combination of a^dsl.
 - Current HFAG average has uncertainties of a^d_{sl}: 0.33% and a^s_{sl}: 0.64% including previous D0 measurements.
 - Our combination

$$a_{sl}^s = (-1.73 \pm 0.56)\%$$

 $a_{sl}^d = (0.11 \pm 0.30)\%$
 $\rho = -0.51$

 $|q/p|_s = 1.0115 \pm 0.0028$ $|q/p|_d = 0.9980 \pm 0.0015$

Combination with LHCb

HFAG PDG 2012 ະດີ ເດັ average of **B-Factory results:** $a_{sl}^{d} = (-0.05 \pm 0.56)\%$ $a_{\rm sl}^s = (-0.88 \pm 0.42)\,\%$ $a_{\rm sl}^d = (-0.37 \pm 0.30)\%$ $\rho = -0.42$ -0.02 p-value(SM) = 0.69% Average D0, LHCb as 2.7 standard deviations B Factory a^d_{sl} $A_{sl}^{b}(IP_{>120}) 68\%^{sl} C.L.$ $A_{sl}^{b}(IP_{<120}) 68\%^{sl} C.L.$ $\chi^2 = 1.57/2$ dof -0.04 Combination a^ssl is 2.1 standard Standard Model -0.02 -0.04 0.02 0 deviations from zero

 a_s^d